EXPERIMENTAL STUDY OF NATURAL GAS HUMIDITY CONTROL DEVICE

Author:

Bilynsky YosypORCID,Horodetska OksanaORCID,Sirenko SvitlanaORCID,Novytskyi DmytroORCID

Abstract

The means of measuring humidity based on the use of the ultrahigh frequency method have been recently gaining widespread use, because of its simple, robust construction and high measuring accuracy. We used the advanced waveguide ultrahigh frequency method of measuring the moisture content of natural gas which, in contrast to the known the use of a traveling wave in a waveguide, is proposed. In this case, the interaction with waves of the ultrahigh frequency range changes the dielectric properties of the gas, and this change is registered. On the basis of an improved ultrahigh frequency method of humidity measurement, a device for natural gas humidity control using a traveling wave in a waveguide is proposed. The investigations have shown that a comparative channel increased the measurement accuracy, as a two-channel system – in contrast to a single-channel – eliminates the instability of the value of the input signal supplied to the generator. The principle of operation of a natural gas humidity control device that contains an ultrahigh frequency generator, attenuators, waveguide tees, a waveguide section for comparison, temperature sensor and pressure switches for the comparative and measuring channels, a measuring cuvette, amplifier, microprocessor, and display unit is described. A mathematical model of a natural gas humidity control device, which takes into account the values of the dielectric permittivity of the measuring gas and reference channels and contains correction factors for temperature, the use of which increases the accuracy of humidity measurement, is proposed. The lower and upper calibration points of the natural gas humidity control device are defined. The influence of correction factors for the temperature at the measurement error of the humidity is analyzed.

Publisher

Politechnika Lubelska

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3