Abstract
Gastrointestinal cancer (GIC) is a common and widespread form of tumor, with colonoscopy and upper gastrointestinal endoscopy available to detect relevant precancerous polyps and lesions. However, many patients are already in the late stages when first diagnosed with such cancer, resulting in a poor prognosis. Thus, it is necessary to explore new methods and research directions in order to improve the treatment of GIC. Given the specific nature of the gastrointestinal tract, research should focus on the mechanisms of various inflammations and the interactions between food entering and exiting from the gastrointestinal tract and cancer cells. Interestingly, six transmembrane epithelial antigens of the prostates (STEAPs) have been found to be significantly linked to the progression of malignant tumors, associated with intracellular oxidative stress and playing a major role in inflammation with their structure and function. This paper explores the mechanism of STEAPs in the inflammatory response of GIC, providing a theoretical basis for the prevention and early intervention of GIC. The basic properties of the STEAP family as metal reductase are also explained. When it comes to intervention for GIC prevention, STEAPs can affect the activity of Fe3+, Cu2+ reductase and regulate metal ion uptake in vivo , participating in inflammation-related iron and copper homeostasis. Thus, the mechanism of STEAPs on inflammation is of important value in the prevention of GIC.
Publisher
Baishideng Publishing Group Inc.