Author:
Omoregie Armstrong Ighodalo,Senian Nurnajwani,Ye Li Phua,Hei Ngu Lock,Leong Dominic Ong Ek,Henry Ginjom Irine Runnie,Nissom Peter Morin
Abstract
Urease is a key enzyme in the chemical reaction of microorganism and has been found to be associated withcalcification, which is essential in microbially induced calcite precipitation (MICP) process. Three bacterialisolates (designated as LPB19, TSB31 and TSB12) were among twenty-eight bacteria that were isolated fromsamples collected from Sarawak limestone caves using the enrichment culture technique. Isolates LPB19, TSB31and TSB12 were selected based on their quick urease production when compared to other isolates. Phenotypiccharacteristics indicate all three bacterial strains are gram-positive, rod-shaped, motile, catalase and oxidasepositive. Urease activity of the bacterial isolates were measured through changes in conductivity in the absence ofcalcium ions. The bacterial isolates (LPB19, TSB12 and TSB31) showed urease activity of 16.14, 12.45 and 11.41mM urea hydrolysed/min respectively. The current work suggested that these isolates serves as constitutiveproducers of urease, potentially useful in inducing calcite precipitates.
Reference49 articles.
1. Production of bacteria for structural concrete;Achal;In T F Pacheco J A Labrincha M V Diamanti C P Yu & H K Lee (Eds ) Biotechnologies and Biomimetics for Civil Engineering,2015
2. Achal, V., Abhijit, M. & Reddy, S.M. (2010). Characterization of two urease-producing and calcifying Bacillus spp. isolated from cement. Journal of Microbiology and Biotechnology, 20: 1571-1576.
3. Achal, V., Mukherjee, A., Basu, P.C. & Reddy, M.S. (2009). Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. Journal of Industrial Microbiology and Biotechnology, 36: 981-988.
4. Achal, V. & Pan, X. (2011). Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation. Current Microbiology, 62: 894-902.
5. Al-Thawadi, S. & Cord-Ruwisch, R. (2012). Calcium carbonate crystals formation by ureolytic bacteria isolated from Australian soil and sludge. Journal of Advanced Science and Engineering Research, 2: 12-16.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献