Affiliation:
1. Dire Dawa University, College of Natural and Computational Sciences, Department of Biology, Dire Dawa, Ethiopia
2. Haramaya University, College of Natural and Computational Sciences, School of Biology and Biotechnology, Haramaya, Ethiopia
3. Addis Ababa Science and Technology University, Department of Biotechnology, Addis Ababa, Ethiopia
Abstract
Urease is an enzyme produced by ureolytic microorganisms which hydrolyzes urea into ammonia and carbon dioxide. Microbial urease has wide applications in biotechnology, agriculture, medicine, construction, and geotechnical engineering. Urease-producing microbes can be isolated from different ecosystems such as soil, oceans, and various geological formations. The aim of this study was to isolate and characterize rapid urease-producing bacteria from Ethiopian soils. Using qualitative urease activity assay, twenty urease-producing bacterial isolates were screened and selected. Among these, three expressed urease at high rates as determined by a conductivity assay. The isolates were further characterized with respect to their biochemical, morphological, molecular, and exoenzyme profile characteristics. The active urease-producing bacterial isolates were found to be nonhalophilic to slightly halophilic neutrophiles and aerobic mesophiles with a range of tolerance towards pH (4.0–10.0), NaCl (0.25—5%), and temperature (20–40°C). According to the API ZYM assays, all three isolates were positive for alkaline phosphatase, leucine aryl amidase, acid phosphatase, and naphthol_AS_BI_phosphohydrolase. The closest described relatives of the selected three isolates (Isolate_3, Isolate_7, and Isolate_11) were Bacillus paramycoides, Citrobacter sedlakii, and Enterobacter bugandensis with 16S rRNA gene sequence identity of 99.0, 99.2, and 98.9%, respectively. From the study, it was concluded that the three strains appear to have a relatively higher potential for urease production and be able to grow under a wider range of growth conditions.
Funder
Ministerstwo Nauki i Szkolnictwa Wyzszego
Subject
Microbiology (medical),Microbiology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献