Affiliation:
1. National Institute of Hydrology, Roorkee
2. Heriot-Watt University, Edinburgh
Abstract
An investigation of soil and water resources is essential to determine the future scenario of water management and water resources to attain food and water security. The improper management of watersheds results in a huge amount of sediment loss and surface runoff. Therefore, the present study was carried out to estimate the surface runoff and soil erosion using the Soil Conservation Service Curve Number (SCS-CN) method and RUSLE approach, respectively. These have been estimated using geospatial technologies for the ungauged Mandri river watershed from the Kanker district of Chhattisgarh State in India. The runoff potential zones, which are defined by the area's impermeable surfaces for a given quantity of precipitation were identified based on curve numbers at the sub-watershed levels. The land use data were collected from LISS IV images of 2009. The results showed that the average volume of runoff generated throughout the 16 years (2000-2015) was 14.37 million cubic meters (mM3). While average annual soil loss was found to be 17.23 tons/ha/year. Most of the eroded area was found to be around the major stream in a drainage system of Mandri River and on higher slopes of the terrain in the watershed. This study revealed that surface runoff and soil erosion are primary issues, which adversely affected the soil and water resources in this watershed. Therefore, suitable water harvesting sites and structures can be constructed based on the potential runoff zone and severity of soil erosion to conserve the soil and water in the watershed.
Publisher
International Journal of Engineering and Geoscience
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference66 articles.
1. Mishra, S. K., Pandey, A., & Singh, V. P. (2012). Special issue on soil conservation service curve number (SCS-CN) methodology. Journal of Hydrologic Engineering, 17(11), 1157-1157. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000694
2. Marshall, E. J. P., West, T. M., & Kleijn, D. (2006). Impacts of an agri-environment field margin prescription on the flora and fauna of arable farmland in different landscapes. Agriculture, ecosystems & environment, 113(1-4), 36-44. https://doi.org/10.1016/j.agee.2005.08.036
3. Swain, S., Mishra, S. K., & Pandey, A. (2021). A detailed assessment of meteorological drought characteristics using simplified rainfall index over Narmada River Basin, India. Environmental Earth Sciences, 80, 1-15. https://doi.org/10.1007/s12665-021-09523-8
4. Patil, M. (2016). Stream flow modeling for ranganadi hydropower project in India considering climate change. Current World Environment, 11(3), 834. https://doi.org/10.12944/CWE.11.3.19
5. Ramana, G. V., Viswanadh, G. K., & Gautam, N. C. (2011). Rainfall and Runoff process using by overland Time of Concentration Model and GIS Modules. In 12th ESRI India User Conference, New Delhi.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献