Peroxidative Stress in Diabetic Blood Vessels: Reversal by Pancreatic Islet Transplantation

Author:

Pieper Galen M1,Jordan Milan1,Dondlinger Lynn A1,Adams Mark B1,Roza Allan M1

Affiliation:

1. Department of Transplant Surgery, Medical College of Wisconsin Milwaukee, Wisconsin

Abstract

Diabetic complications are believed to arise, in part, through an increase in oxidative stress. We characterized antioxidant status in vascular tissue in untreated diabetic rats and in diabetic rats rendered euglycemic by pancreatic islet transplantation. Three key endogenous antioxidant enzymes (e.g., superoxide dismutase, catalase, and glutathione peroxidase) were measured. Sprague-Dawley rats with streptozotocin-induced diabetes were killed after 8 weeks of untreated hyperglycemia and compared with age-matched controls. Eight weeks of untreated diabetes resulted in a significant increase of tissue catalase in aorta, iliac artery, and femoral artery as compared with controls. No significant changes in either superoxide dismutase or glutathione peroxidase were observed in aorta, iliac artery, or femoral artery of diabetic animals. This increase in catalase in diabetic vascular tissue suggests increased oxidative stress due to chronic exposure to H2O2 in vivo. To assess the impact of islet transplantation on oxidative stress in vascular tissue, inbred Lewis strain rats were rendered diabetic with streptozotocin. After 8 weeks of untreated diabetes, rats received an intraportal islet isograft and were monitored for 4 subsequent weeks of euglycemia. Islet transplantation improved weight gain and normalized blood glucose and total glycosylated hemoglobin. While catalase was significantly increased in aorta and iliac artery at 8 and 12 weeks of diabetes, vascular catalase was restored to normal by islet transplantation. These data suggest that islet transplantation is an effective treatment strategy to minimize increased oxidative stress in diabetic vasculature.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3