Suppression of Epithelial-to-Mesenchymal Transitioning Enhances Ex Vivo Reprogramming of Human Exocrine Pancreatic Tissue Toward Functional Insulin-Producing β-Like Cells

Author:

Lima Maria João1,Muir Kenneth R.1,Docherty Hilary M.1,Drummond Robert2,McGowan Neil W.A.3,Forbes Shareen4,Heremans Yves5,Houbracken Isabelle5,Ross James A.2,Forbes Stuart J.6,Ravassard Philippe78,Heimberg Harry5,Casey John3,Docherty Kevin1

Affiliation:

1. School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, U.K.

2. Medical Research Council Centre for Regenerative Medicine, Tissue Injury and Repair Group, University of Edinburgh, Chancellor's Building, Edinburgh, U.K.

3. Department of Surgery, University of Edinburgh, Edinburgh Royal Infirmary, Edinburgh, U.K.

4. Endocrinology Unit, University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, U.K.

5. Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium

6. Medical Research Council Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine Building, University of Edinburgh, Edinburgh, U.K.

7. Biotechnology and Biotherapy Laboratory, CNRS UMR 7225, INSERM 975, Paris, France

8. University Pierre and Marie Curie, Hôpital Pitié Salpêtrière, Paris, France.

Abstract

Because of the lack of tissue available for islet transplantation, new sources of β-cells have been sought for the treatment of type 1 diabetes. The aim of this study was to determine whether the human exocrine-enriched fraction from the islet isolation procedure could be reprogrammed to provide additional islet tissue for transplantation. The exocrine-enriched cells rapidly dedifferentiated in culture and grew as a mesenchymal monolayer. Genetic lineage tracing confirmed that these mesenchymal cells arose, in part, through a process of epithelial-to-mesenchymal transitioning (EMT). A protocol was developed whereby transduction of these mesenchymal cells with adenoviruses containing Pdx1, Ngn3, MafA, and Pax4 generated a population of cells that were enriched in glucagon-secreting α-like cells. Transdifferentiation or reprogramming toward insulin-secreting β-cells was enhanced, however, when using unpassaged cells in combination with inhibition of EMT by inclusion of Rho-associated kinase (ROCK) and transforming growth factor-β1 inhibitors. Resultant cells were able to secrete insulin in response to glucose and on transplantation were able to normalize blood glucose levels in streptozotocin diabetic NOD/SCID mice. In conclusion, reprogramming of human exocrine-enriched tissue can be best achieved using fresh material under conditions whereby EMT is inhibited, rather than allowing the culture to expand as a mesenchymal monolayer.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3