Pparg-P465L Mutation Worsens Hyperglycemia in Ins2-Akita Female Mice via Adipose-Specific Insulin Resistance and Storage Dysfunction

Author:

Pendse Avani A.1,Johnson Lance A.1,Tsai Yau-Sheng2,Maeda Nobuyo1

Affiliation:

1. Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina;

2. Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.

Abstract

OBJECTIVE The dominant-negative P467L mutation in peroxisome proliferator activated receptor-γ (PPARγ) was identified in insulin-resistant patients with hyperglycemia and lipodystrophy. In contrast, mice carrying the corresponding Pparg-P465L mutation have normal insulin sensitivity, with mild hyperinsulinemia. We hypothesized that murine Pparg-P465L mutation leads to covert insulin resistance, which is masked by hyperinsulinemia and increased pancreatic islet mass, to retain normal plasma glucose. RESEARCH DESIGN AND METHODS We introduced in PpargP465L/+ mice an Ins2-Akita mutation that causes improper protein folding and islet apoptosis to lower plasma insulin. RESULTS Unlike Ins2Akita/+ littermates, male PpargP465L/+Ins2Akita/+ mice have drastically reduced life span with enhanced type 1 diabetes. Hyperglycemia in Ins2Akita/+ females is mild. However, PpargP465L/+Ins2Akita/+ females have aggravated hyperglycemia, smaller islets, and reduced plasma insulin. In an insulin tolerance test, they showed smaller reduction in plasma glucose, indicating impaired insulin sensitivity. Although gluconeogenesis is enhanced in PpargP465L/+Ins2Akita/+ mice compared with Ins2Akita/+, exogenous insulin equally suppressed gluconeogenesis in hepatocytes, suggesting that PpargP465L/+Ins2Akita/+ livers are insulin sensitive. Expression of genes regulating insulin sensitivity and glycogen and triglyceride contents suggest that skeletal muscles are equally insulin sensitive. In contrast, adipose tissue and isolated adipocytes from PpargP465L/+Ins2Akita/+ mice have impaired glucose uptake in response to exogenous insulin. PpargP465L/+Ins2Akita/+ mice have smaller fat depots composed of larger adipocytes, suggesting impaired lipid storage with subsequent hepatomegaly and hypertriglyceridemia. CONCLUSIONS PPARg-P465L mutation worsens hyperglycemia in Ins2Akita/+ mice primarily because of adipose-specific insulin resistance and altered storage function. This underscores the important interplay between insulin and PPARγ in adipose tissues in diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3