Endothelial Nitric Oxide Synthase–Dependent Tyrosine Nitration of Prostacyclin Synthase in Diabetes In Vivo

Author:

Nie Hong1,Wu Ji-liang2,Zhang Miao3,Xu Jian3,Zou Ming-Hui3

Affiliation:

1. Shanghai Institute of Immunology, Basic Medical College, Shanghai Jiao Tong University, Shanghai, China

2. Department of Pharmacology, Xianning College, Xianning, China

3. Section of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma

Abstract

There is evidence that reactive nitrogen species are implicated in diabetic vascular complications, but their sources and targets remain largely unidentified. In the present study, we aimed to study the roles of endothelial nitric oxide synthase (eNOS) in diabetes. Exposure of isolated bovine coronary arteries to high glucose (30 mmol/l d-glucose) but not to osmotic control mannitol (30 mmol/l) switched angiotensin II–stimulated prostacyclin (PGI2)-dependent relaxation into a persistent vasoconstriction that was sensitive to either indomethacin, a cyclooxygenase inhibitor, or SQ29548, a selective thromboxane receptor antagonist. In parallel, high glucose, but not mannitol, significantly increased superoxide and 3-nitrotyrosine in PGI2 synthase (PGIS). Concurrent administration of polyethylene-glycolated superoxide dismutase (SOD), l-nitroarginine methyl ester, or sepiapterin not only reversed the effects of high glucose on both angiotensin II–induced relaxation and PGI2 release but also abolished high-glucose–enhanced PGIS nitration, as well as its association with eNOS. Furthermore, diabetes significantly suppressed PGIS activity in parallel with increased superoxide and PGIS nitration in the aortas of diabetic C57BL6 mice but had less effect in diabetic mice either lacking eNOS or overexpressing human SOD (hSOD+/+), suggesting an eNOS-dependent PGIS nitration in vivo. We conclude that diabetes increases PGIS nitration in vivo, likely via dysfunctional eNOS.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3