Affiliation:
1. Vascular Biology Unit, Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
Abstract
Loss of the modulatory role of the endothelium may be a critical initial factor in the development of diabetic vascular diseases. Exposure of human aortic endothelial cells (HAECs) to high glucose (30 or 44 mmol/l) for 7–10 days significantly increased the release of superoxide anion in response to the calcium ionophore A23187. Nitrate, a breakdown product of peroxynitrite (ONOO−), was substantially increased in parallel with a decline in cyclic guanosine monophosphate (GMP). Using immunochemical techniques and high-performance liquid chromatography, an increase in tyrosine nitration of prostacyclin (PGI2) synthase (PGIS) associated with a decrease in its activity was found in cells exposed to high glucose. Both the increase in tyrosine nitration and the decrease in PGIS activity were lessened by decreasing either nitric oxide or superoxide anion, suggesting that ONOO− was responsible. Furthermore, SQ29548, a thromboxane/prostaglandin (PG) H2 (TP) receptor antagonist, significantly reduced the increased endothelial cell apoptosis and the expression of soluble intercellular adhesion molecule-1 that occurred in cells exposed to high glucose, without affecting the decrease in PGIS activity. Thus, exposure of HAECs to high glucose increases formation of ONOO−, which causes tyrosine nitration and inhibition of PGIS. The shunting of arachidonic acid to the PGI2 precursor PGH2 or other eicosanoids likely results in TP receptor stimulation. These observations can explain several abnormalities in diabetes, including 1) increased free radicals, 2) decreased bioactivity of NO, 3) PGI2 deficiency, and 4) increased vasoconstriction, endothelial apoptosis, and inflammation via TP receptor stimulation.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Reference33 articles.
1. Ruderman NB, Williamson JR, Brownlee M: Glucose and diabetic vascular disease. FASEB J 6: 2905–2914, 1992
2. Cohen RA: Dysfunction of the vascular endothelium in diabetes mellitus. Circulation 87:67–76, 1993
3. Cosentino F, Lüscher TF: Endothelial dysfunction in diabetes mellitus. J Cardiovasc Pharmacol 32:S54–S61, 1998
4. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M: Normalizing mitochondrial superoxide production blocks three pathways of hyperglycemic damage. Nature 404:787–790, 2000
5. Bucala R, Tracey KJ, Cerami A: Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Invest 87:432–438, 1991
Cited by
249 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献