Sulfonylurea Receptors, Ion Channels, and Fruit Flies

Author:

Boyd Aubrey E1

Affiliation:

1. Division of Endocrinology and Metabolism, and the Diabetes and Endocrinology Research Center, the Departments of Medicine and Cell Biology, Baylor College of Medicine Houston, Texas

Abstract

Recent studies have identified a high-affinity receptor on the plasma membrane of the β-cell that is specific for all of the sulfonylureas. The most potent secondgeneration drugs, glyburide and glipizide, bind to the receptor and trigger insulin release at nanomolar concentrations. The affinity to the receptor-ligand interaction of all sulfonylureas correlates with their potency as insulin secretagogues, further implicating receptor occupancy with signal transduction. These drugs also inhibit the electrical activity of ATPsensitive K+ channels and K+ efflux through these channels. The channels are also closed by the metabolism of the major insulin secretagogues, glucose and the amino acids, which signal insulin release by increasing the ATP level or the [ATP]-to-[ADP] ratio on the cytoplasmic side of the channel. Based on the channel number and the amount of K+ current they pass, it is possible to calculate that these channels control the resting membrane potential of the β-cell. Inactivation of the ATP-inhibitable K+ channel results in a fall in the resting membrane potential, cell depolarization, and influx of extracellular Ca2+ through the voltage-dependent Ca2+ channel. The rise in intracellular free Ca2+ level triggers exocytosis. Thus, it is now possible to link either a stimulus from the metabolism of insulin secretagogues or the sulfonylureas to ionic and electrical events that elicit insulin release. These data also suggest that the sulfonylurea receptor or a closely associated protein is an ATP-sensitive K+ channel.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3