Imatinib Mesylate Reduces Endoplasmic Reticulum Stress and Induces Remission of Diabetes in db/db Mice

Author:

Han Myoung Sook1,Chung Kun Wook1,Cheon Hyae Gyeong2,Rhee Sang Dal2,Yoon Chang-Hwan3,Lee Moon-Kyu1,Kim Kwang-Won1,Lee Myung-Shik1

Affiliation:

1. Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

2. Medicinal Science Division, Korea Research Institute of Chemical Technology, Daejon, Korea

3. Laboratory of Molecular Biochemistry, Department of Chemistry, Hanyang University, Seoul, Korea

Abstract

OBJECTIVE—Imatinib has been reported to induce regression of type 2 diabetes in chronic leukemia patients. However, the mechanism of diabetes amelioration by imatinib is unknown, and it is uncertain whether imatinib has effects on type 2 diabetes itself without other confounding diseases like leukemia. We studied the effect of imatinib on diabetes in db/db mice and investigated possible mechanism's underlying improved glycemic control by imatinib. RESEARCH DESIGN AND METHODS—Glucose tolerance and insulin tolerance tests were done after daily intraperitoneal injection of 25 mg/kg imatinib into db/db and C57BL/6 mice for 4 weeks. Insulin signaling and endoplasmic reticulum stress responses were studied by Western blotting. β-Cell mass and apoptotic β-cell number were determined by combined terminal deoxynucleotidyl transferase–mediated dUTP nick-end labeling (TUNEL) staining and insulin immunohistochemistry. The in vitro effect of imatinib was studied using HepG2 cells. RESULTS—Imatinib induced remission of diabetes in db/db mice and amelioration of insulin resistance. Expression of endoplasmic reticulum stress markers in the liver and adipose tissues of db/db mice, such as phospho-PERK, phospho-eIF2α, TRB3, CHOP, and phospho–c-Jun NH2-terminal kinase, was reduced by imatinib. Insulin receptor substrate-1 tyrosine phosphorylation and Akt phosphorylation after insulin administration were improved by imatinib. Serum aminotransferase levels and hepatic triglyceride contents were decreased by imatinib. Pancreatic β-cell mass was increased by imatinib, accompanied by decreased TUNEL+ β-cell and increased BrdU+ β-cell numbers. Imatinib attenuated endoplasmic reticulum stress in hepatoma cells in vitro. CONCLUSIONS—Imatinib ameliorated endoplasmic reticulum stress and induced remission of diabetes in db/db mice. Imatinib or related compounds could be used as therapeutic agents against type 2 diabetes and metabolic syndrome.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3