Dual Effect of Raptor on Neonatal β-Cell Proliferation and Identity Maintenance

Author:

Wang Yanqiu1,Sun Jiajun1,Ni Qicheng1,Nie Aifang1,Gu Yanyun1ORCID,Wang Shu1,Zhang Weizhen2,Ning Guang1ORCID,Wang Weiqing1ORCID,Wang Qidi13ORCID

Affiliation:

1. Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

2. Department of Physiology and Pathophysiology, School of Basic Science, Peking University Health Science Center, Beijing, China

3. Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China

Abstract

Immature pancreatic β-cells are highly proliferative, and the expansion of β-cells during the early neonatal period largely determines functional β-cell mass; however, the mechanisms are poorly characterized. We generated Ngn3RapKO mice (ablation of Raptor, an essential component of mechanistic target of rapamycin [mTORC1] in Ngn3+ endocrine progenitor cells) and found that mTORC1 was dispensable for endocrine cell lineage formation but specifically regulated both proliferation and identity maintenance of neonatal β-cells. Ablation of Raptor in neonatal β-cells led to autonomous loss of cell identity, decelerated cell cycle progression, compromised proliferation, and caused neonatal diabetes as a result of inadequate establishment of functional β-cell mass at postnatal day 14. Completely different from mature β-cells, Raptor regulated G1/S and G2/M phase cell cycle transition, thus permitting a high proliferation rate in neonatal β-cells. Moreover, Ezh2 was identified as a critical downstream target of mTORC1 in neonatal β-cells, which was responsible for G2/M phase transition and proliferation. Our discovery of the dual effect of mTORC1 in immature β-cells has revealed a potential target for replenishing functional β-cell pools by promoting both expansion and functional maturation of newly formed immature β-cells.

Funder

National Natural Sciences Foundation of China Grants

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3