HES-1 Is Involved in Adaptation of Adult Human β-Cells to Proliferation In Vitro

Author:

Bar Yael1,Russ Holger A.1,Knoller Sarah1,Ouziel-Yahalom Limor1,Efrat Shimon1

Affiliation:

1. From the Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel

Abstract

OBJECTIVE—In vitro expansion of β-cells from adult human islets could solve the tissue shortage for cell replacement therapy of diabetes. Culture of human islet cells typically results in <16 cell doublings and loss of insulin expression. Using cell lineage tracing, we demonstrated that the expanded cell population included cells derived from β-cells. Understanding the molecular mechanisms involved in β-cell fate in vitro is crucial for optimizing expansion and redifferentiation of these cells. In the developing pancreas, important cell-fate decisions are regulated by NOTCH receptors, which signal through the hairy and enhancer of split (HES)-1 transcriptional regulator. Here, we investigated the role of the NOTCH signaling pathway in β-cell dedifferentiation and proliferation in vitro. RESEARCH DESIGN AND METHODS—Isolated human islets were dissociated into single cells. β-Cells were genetically labeled using a Cre-lox system delivered by lentiviruses. Cells were analyzed for changes in expression of components of the NOTCH pathway during the initial weeks in culture. HES-1 expression was inhibited by a small hairpin RNA (shRNA), and the effects on β-cell phenotype were analyzed. RESULTS—Human β-cell dedifferentiation and entrance into the cell cycle in vitro correlated with activation of the NOTCH pathway and downregulation of the cell cycle inhibitor p57. Inhibition of HES-1 expression using shRNA resulted in significantly reduced β-cell replication and dedifferentiation. CONCLUSIONS—These findings demonstrate that the NOTCH pathway is involved in determining β-cell fate in vitro and suggest possible molecular targets for induction of β-cell redifferentiation following in vitro expansion.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3