Affiliation:
1. Diabetes and Obesity Program, Garvan Institute of Medical Research, New South Wales, Australia
2. Department of Endocrinology and Metabolism, Aarhus University Hospital, Aarhus, Denmark
Abstract
Individuals with insulin resistance and type 2 diabetes have an impaired ability to switch appropriately between carbohydrate and fatty acid oxidation. However, whether this is a cause or consequence of insulin resistance is unclear, and the mechanism(s) involved in this response is not completely elucidated. Whole-body fat oxidation and transcriptional regulation of genes involved in lipid metabolism in skeletal muscle were measured after a prolonged fast and after consumption of either high-fat (76%) or high-carbohydrate (76%) meals in individuals with no family history of type 2 diabetes (control, n = 8) and in age- and fatness-matched individuals with a strong family history of type 2 diabetes (n = 9). Vastus lateralis muscle biopsies were performed before and 3 h after each meal. Insulin sensitivity and fasting measures of fat oxidation were not different between groups. However, subjects with a family history of type 2 diabetes had an impaired ability to increase fatty acid oxidation in response to the high-fat meal (P < 0.05). This was related to impaired activation of genes involved in lipid metabolism, including those for peroxisome proliferator–activated receptor coactivator-1α (PGC1α) and fatty acid translocase (FAT)/CD36 (P < 0.05). Of interest, adiponectin receptor-1 expression decreased 23% after the high-fat meal in both groups, but it was not changed after the high-carbohydrate meal. In conclusion, an impaired ability to increase fatty acid oxidation precedes the development of insulin resistance in genetically susceptible individuals. PGC1α and FAT/CD36 are likely candidates in mediating this response.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献