Metabolic Defects in Lean Nondiabetic Offspring of NIDDM Parents: A Cross-Sectional Study

Author:

Perseghin Gianluca1,Ghosh Soumitra2,Gerow Karynn1,Shulman Gerald I1

Affiliation:

1. From the Department of Internal Medicine, Yale University School of Medicine New Haven, Connecticut

2. National Center for Human Genome Research, Laboratory of Gene Transfer Bethesda, Maryland

Abstract

First-degree relatives of NIDDM patients have an ∼40% lifetime risk of developing diabetes, and insulin resistance is the best predictor. However, insulin resistance is altered by many other factors, including age, diet, exercise, and medications. To investigate the metabolic and endocrine alterations associated with insulin resistance when all the above confounding factors are excluded, we examined the first phase of insulin secretion and insulin sensitivity in 49 white normoglycemic (4.99 ± 0.51 vs. 4.95 ± 0.41 mmol/l) nonexercising lean (BMI, 24 ± 3 vs. 23 ± 2 kg/m2; 105 ± 3 vs. 104 ± 3% of ideal body weight) offspring of NIDDM patients. These subjects were compared with 29 matched healthy control subjects by means of an intravenous glucose bolus (0.3 g/kg body wt), immediately followed by a euglycemic-hyperinsulinemic (∼420 μmol/l) clamp, along with lipid and amino acid profiles. The offspring showed fasting hyperinsulinemia (40.6 ± 15.8 vs. 30.9 ± 13.6 μmol/l; P = 0.005) and higher free fatty acid (FFA) levels (582 ± 189 vs. 470 ± 140 μmol/l; P = 0.007), whereas triglycerides, total cholesterol, and HDL and LDL cholesterol levels were comparable with those of control subjects. Alanine (320 ± 70 vs. 361 ± 73 μmol/l; P = 0.017), serine (P = 0.05), and glutamine and glycine (P = 0.02) were lower in the offspring than in the control subjects, whereas branched-chain amino acids (343 ± 54 vs. 357 ± 54 μmol/l; P = 0.28) were not different. Insulin sensitivity was lower (4.86 ± 1.65 vs. 6.17 ± 1.56 mg · kg−1 · min−1; P = 0.001), and an inverse correlation with fasting FFAs in the offspring (adjusted R2 = 0.21, P = 0.0005), but not in control subjects (adjusted R2 = 0.03, P = 0.368), was found. Because insulin sensitivity in the offspring appeared to be a mixture of three distributions, they were subdivided into three subgroups: very low, low, and normal insulin sensitivity (20, 47, and 33%, respectively). The same alterations in amino acid and FFA metabolism were observed in the very low and low subgroups but not in the normal subgroup. The first phase of insulin secretion appeared to compensate significantly for insulin resistance in the low subgroup versus the normal subgroup and controls, but was inappropriately low in the subgroup with very low insulin sensitivity considering its degree of insulin resistance. In conclusion, lean insulin-resistant offspring of NIDDM parents showed 1) trimodal distribution of insulin sensitivity, 2) high fasting plasma FFA concentrations, 3) an inverse correlation between insulin sensitivity and FFA concentration, 4) low plasma gluconeogenic amino acid concentrations, and 5) defective insulin secretion when related to insulin sensitivity in the subgroup of very resistant offspring. These results suggest that, in this white population, insulin sensitivity may be determined by a single major gene and that alterations in FFA metabolism may play a role in the pathogenesis of NIDDM.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 160 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3