PTEN Expression Contributes to the Regulation of Muscle Protein Degradation in Diabetes

Author:

Hu Zhaoyong1,Lee In Hee1,Wang Xiaonan2,Sheng Hongmiao3,Zhang Liping1,Du Jie1,Mitch William E.1

Affiliation:

1. Nephrology Division, Baylor College of Medicine, Houston, Texas

2. Renal Division, Emory University School of Medicine, Atlanta, Georgia

3. Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana

Abstract

OBJECTIVE—Conditions accelerating muscle proteolysis are frequently associated with defective phosphatidylinositol 3-kinase (PI3K)/Akt signaling and reduced PI3K-generated phosphatidylinositol 3,4,5-triphosphate (PIP3). We evaluated the control of muscle protein synthesis and degradation in mouse models of type 1 and 2 diabetes to determine whether defects besides PI3K/Akt activities affect muscle metabolism. RESEARCH DESIGN AND METHODS—We evaluated the expression and activity of PTEN, the phosphatase converting PIP3 to inactive phosphatidylinositol 4,5-bisphosphate, and studied how PTEN influences muscle protein in diabetic wild-type mice and in mice with partial deficiency of PTEN+/−. RESULTS—In acutely diabetic mice, muscle PTEN expression was decreased. It was increased by chronic diabetes or insulin resistance. In cultured C2C12 myotubes, acute suppression of PI3K activity led to decreased PTEN expression, while palmitic acid increased PTEN in myotubes in a p38-dependent fashion. To examine whether PTEN affects muscle protein turnover, we studied primary myotubes cultures from wild-type and PTEN+/− mice. The proteolysis induced by serum deprivation was suppressed in PTEN+/− cells. Moreover, the sizes of muscle fibers in PTEN+/− and wild-type mice were similar, but the increase in muscle proteolysis caused by acute diabetes was significantly suppressed by PTEN+/−. This antiproteolytic response involved higher PIP3 and p-Akt levels and a decrease in caspase-3–mediated actin cleavage and activation of the ubiquitin-proteasome system as signified by reduced induction of atrogin-1/MAFbx or MurF1 (muscle-specific RING finger protein 1). CONCLUSIONS—Changes in PTEN expression participate in the regulation of muscle proteolytic pathways. A decrease in PTEN could be a compensatory mechanism to prevent muscle protein losses.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3