Overexpression of Kinase-Negative Protein Kinase Cδ in Pancreatic β-Cells Protects Mice From Diet-Induced Glucose Intolerance and β-Cell Dysfunction

Author:

Hennige Anita M.1,Ranta Felicia1,Heinzelmann Isabel1,Düfer Martina2,Michael Diana1,Braumüller Heidi3,Lutz Stefan Z.1,Lammers Reiner1,Drews Gisela2,Bosch Fatima4,Häring Hans-Ulrich1,Ullrich Susanne1

Affiliation:

1. Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology, and Clinical Chemistry, University of Tübingen, Tübingen, Germany;

2. Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Tübingen, Tübingen, Germany;

3. Department of Dermatology, University of Tübingen, Tübingen, Germany;

4. Center of Animal Biotechnology and Gene Therapy, Universita Autònoma Barcelona, and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.

Abstract

OBJECTIVE In vitro models suggest that free fatty acid–induced apoptotic β-cell death is mediated through protein kinase C (PKC)δ. To examine the role of PKCδ signaling in vivo, transgenic mice overexpressing a kinase-negative PKCδ (PKCδKN) selectively in β-cells were generated and analyzed for glucose homeostasis and β-cell survival. RESEARCH DESIGN AND METHODS Mice were fed a standard or high-fat diet (HFD). Blood glucose and insulin levels were determined after glucose loads. Islet size, cleaved caspase-3, and PKCδ expression were estimated by immunohistochemistry. In isolated islet cells apoptosis was assessed with TUNEL/TO-PRO3 DNA staining and the mitochondrial potential by rhodamine-123 staining. Changes in phosphorylation and subcellular distribution of forkhead box class O1 (FOXO1) were analyzed by Western blotting and immunohistochemistry. RESULTS PKCδKN mice were protected from HFD-induced glucose intolerance. This was accompanied by increased insulin levels in vivo, by an increased islet size, and by a reduced staining of β-cells for cleaved caspase-3 compared with wild-type littermates. In accordance, long-term treatment with palmitate increased apoptotic cell death of isolated islet cells from wild-type but not from PKCδKN mice. PKCδKN overexpression protected islet cells from palmitate-induced mitochondrial dysfunction and inhibited nuclear accumulation of FOXO1 in mouse islet and INS-1E cells. The inhibition of nuclear accumulation of FOXO1 by PKCδKN was accompanied by an increased phosphorylation of FOXO1 at Ser256 and a significant reduction of FOXO1 protein. CONCLUSIONS Overexpression of PKCδKN in β-cells protects from HFD-induced β-cell failure in vivo by a mechanism that involves inhibition of fatty acid–mediated apoptosis, inhibition of mitochondrial dysfunction, and inhibition of FOXO1 activation.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3