Fatty acid and phorbol ester-mediated interference of mitogenic signaling via novel protein kinase C isoforms in pancreatic beta-cells (INS-1)

Author:

Wrede CE,Dickson LM,Lingohr MK,Briaud I,Rhodes CJ

Abstract

It is possible that activation of protein kinase C (PKC) isoforms by free fatty acids (FFA) plays a role in the failure of pancreatic beta-cell mass expansion to compensate for peripheral insulin resistance in the pathogenesis of type-2 diabetes. The effect of lipid moieties on activation of conventional (PKC-alpha and -beta1), novel (PKC-delta) and atypical (PKC-zeta) PKC isoforms was evaluated in an in vitro assay, using biotinylated neurogranin as a substrate. Oleoyl-Coenzyme A (CoA) and palmitoyl-CoA, but not unesterified FFA, significantly increased the activity of all PKC isoforms (P< or =0.05), particularly that for PKC-delta. It was found that FFA (0.4 mM oleate/complexed to 0.5% bovine serum albumin) inhibited IGF-I-induced activation of protein kinase B (PKB) in the pancreatic beta-cell line (INS-1), but this was alleviated in the presence of the general PKC inhibitor (Go6850; 1 microM). To further investigate whether conventional or novel PKC isoforms adversely affect beta-cell proliferation, the effect of phorbol ester (phorbol 12-myristate 13-acetate; PMA)-mediated activation of these PKC isoforms on glucose/IGF-I-induced INS-1 cell mitogenesis, and insulin receptor substrate (IRS)-mediated signal transduction was investigated. PMA-mediated activation of PKC (100 nM; 4 h) reduced glucose/IGF-I mediated beta-cell mitogenesis (>50%; P< or =0.05), which was reversible by the general PKC inhibitor Go6850 (1 microM), indicating an effect of PKC and not due to a non-specific PMA toxicity. PMA inhibited IGF-I-induced activation of PKB, correlating with inhibition of IGF-I-induced association of IRS-2 with the p85 regulatory subunit of phosphatidylinositol-3 kinase. However, in contrast, PMA activated the mitogen-activated protein kinases, Erk1/2. Titration inhibition analysis using PKC isoform inhibitors indicated that these PMA-induced effects were via novel PKC isoforms. Thus, FFA/PMA-induced activation of novel PKC isoforms can inhibit glucose/IGF-I-mediated beta-cell mitogenesis, in part by decreasing PKB activation, despite an upregulation of Erk1/2. Thus, activation of novel PKC isoforms by long-chain acyl-CoA may well contribute to decreasing beta-cell mass in the pathogenesis of type-2 diabetes, similar to their inhibition of insulin signal transduction which causes insulin resistance.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3