Affiliation:
1. Department of Pediatrics, University of Minnesota, Minneapolis, MN
2. Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
Abstract
Obesity-induced insulin resistance has been linked to adipose tissue lipid aldehyde production and protein carbonylation. Trans-4-hydroxy-2-nonenal (4-HNE) is the most abundant lipid aldehyde in murine adipose tissue and is metabolized by glutathione S-transferase A4 (GSTA4), producing glutathionyl-HNE (GS-HNE) and its metabolite glutathionyl-1,4-dihydroxynonene (GS-DHN). The objective of this study was to evaluate adipocyte production of GS-HNE and GS-DHN and their effect on macrophage inflammation. Compared with lean controls, GS-HNE and GS-DHN were more abundant in visceral adipose tissue of ob/ob mice and diet-induced obese, insulin-resistant mice. High glucose and oxidative stress induced production of GS-HNE and GS-DHN by 3T3-L1 adipocytes in a GSTA4-dependent manner, and both glutathionylated metabolites induced secretion of tumor necrosis factor-α from RAW 264.7 and primary peritoneal macrophages. Targeted microarray analysis revealed GS-HNE and GS-DHN induced expression of inflammatory genes, including C3, C4b, c-Fos, igtb2, Nfkb1, and Nos2. Transgenic overexpression of GSTA4 in mouse adipose tissue led to increased production of GS-HNE associated with higher fasting glucose levels and moderately impaired glucose tolerance. These results indicated adipocyte oxidative stress results in GSTA4-dependent production of proinflammatory glutathione metabolites, GS-HNE and GS-DHN, which may represent a novel mechanism by which adipocyte dysfunction results in tissue inflammation and insulin resistance.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献