Effects of Palmitate on Ca2+ Handling in Adult Control and ob/ob Cardiomyocytes

Author:

Fauconnier Jérémy1,Andersson Daniel C.1,Zhang Shi-Jin1,Lanner Johanna T.1,Wibom Rolf2,Katz Abram1,Bruton Joseph D.1,Westerblad Håkan1

Affiliation:

1. Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden

2. Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden

Abstract

Obesity and insulin resistance are associated with enhanced fatty acid utilization, which may play a central role in diabetic cardiomyopathy. We now assess the effect of the saturated fatty acid palmitate (1.2 mmol/l) on Ca2+ handling, cell shortening, and mitochondrial production of reactive oxygen species (ROS) in freshly isolated ventricular cardiomyocytes from normal (wild-type) and obese, insulin-resistant ob/ob mice. Cardiomyocytes were electrically stimulated at 1 Hz, and the signal of fluorescent indicators was measured with confocal microscopy. Palmitate decreased the amplitude of cytosolic Ca2+ transients (measured with fluo-3), the sarcoplasmic reticulum Ca2+ load, and cell shortening by ∼20% in wild-type cardiomyocytes; these decreases were prevented by the general antioxidant N-acetylcysteine. In contrast, palmitate accelerated Ca2+ transients and increased cell shortening in ob/ob cardiomyocytes. Application of palmitate rapidly dissipated the mitochondrial membrane potential (measured with tetra-methyl rhodamine-ethyl ester) and increased the mitochondrial ROS production (measured with MitoSOX Red) in wild-type but not in ob/ob cardiomyocytes. In conclusion, increased saturated fatty acid levels impair cellular Ca2+ handling and contraction in a ROS-dependent manner in normal cardiomyocytes. Conversely, high fatty acid levels may be vital to sustain cardiac Ca2+ handling and contraction in obesity and insulin-resistant conditions.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3