Genetic Studies of Metabolomics Change After a Liquid Meal Illuminate Novel Pathways for Glucose and Lipid Metabolism

Author:

Li-Gao Ruifang1ORCID,Hughes David A.23,van Klinken Jan B.4,de Mutsert Renée1,Rosendaal Frits R.1,Mook-Kanamori Dennis O.15,Timpson Nicholas J.23,Willems van Dijk Ko467

Affiliation:

1. Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands

2. Medical Research Council Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, U.K.

3. Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K.

4. Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands

5. Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands

6. Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands

7. Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands

Abstract

Humans spend the greater part of the day in a postprandial state. However, the genetic basis of postprandial blood measures is relatively uncharted territory. We examined the genetics of variation in concentrations of postprandial metabolites (t = 150 min) in response to a liquid mixed meal through genome-wide association studies (GWAS) performed in the Netherlands Epidemiology of Obesity (NEO) study (n = 5,705). The metabolite response GWAS identified an association between glucose change and rs10830963:G in the melatonin receptor 1B (β [SE] −0.23 [0.03], P = 2.15 × 10−19). In addition, the ANKRD55 locus led by rs458741:C showed strong associations with extremely large VLDL (XXLVLDL) particle response (XXLVLDL total cholesterol: β [SE] 0.17 [0.03], P = 5.76 × 10−10; XXLVLDL cholesterol ester: β [SE] 0.17 [0.03], P = 9.74 × 10−10), which also revealed strong associations with body composition and diabetes in the UK Biobank (P < 5 × 10−8). Furthermore, the associations between XXLVLDL response and insulinogenic index, HOMA-β, Matsuda insulin sensitivity index, and HbA1c in the NEO study implied the role of chylomicron synthesis in diabetes (with false discovery rate–corrected q <0.05). To conclude, genetic studies of metabolomics change after a liquid meal illuminate novel pathways for glucose and lipid metabolism. Further studies are warranted to corroborate biological pathways of the ANKRD55 locus underlying diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3