Evidence for Independent Heritability of the Glycation Gap (Glycosylation Gap) Fraction of HbA1c in Nondiabetic Twins

Author:

Cohen Robert M.1,Snieder Harold23,Lindsell Christopher J.1,Beyan Huriya4,Hawa Mohammed I.4,Blinko Stuart5,Edwards Raymond6,Spector Timothy D.3,Leslie R. David G.4

Affiliation:

1. Division of Endocrinology, Medicine, General Clinical Research Center, Emergency Medicine, University of Cincinnati, Medical Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio

2. Department of Pediatrics, Georgia Prevention Institute, Medical College of Georgia, Augusta, Georgia

3. Twin Research & Genetic Epidemiology Unit, St. Thomas’ Hospital, London, U.K.

4. Centre for Diabetes and Metabolic Medicine, Institute of Cell and Molecular Science, St. Bartholomew’s Hospital, London, U.K.

5. Abbott Murex Biotech, Dartford, U.K.

6. The Royal London Medical School and NETRIA, St. Bartholomew’s Hospital, London, U.K.

Abstract

OBJECTIVE—HbA1c (A1C) is substantially determined by genetic factors not shared in common with glucose. Fractions of the variance in A1C, the glycation gap (GG; previously called the glycosylation gap) and the hemoglobin glycosylation index, correlate with diabetes complications. We therefore tested whether GG (measured A1C − A1C predicted from glycated serum proteins [GSPs]) was genetically determined and whether it accounted for the heritability of A1C. RESEARCH DESIGN AND METHODS—We conducted a classic twin study on A1C and GSP collected in 40 and 46 pairs of monozygotic and dizygotic healthy female twins, respectively. The predicted A1C was based on the regression line between A1C and GSP in a separate population spanning the pathophysiologic range. RESULTS—GG was more strongly correlated between monozygotic (r = 0.65) than dizygotic (r = 0.48) twins, adjusted for age and BMI. The best-fitting quantitative genetic model adjusted for age and BMI showed that 69% of population variance in GG is heritable, while the remaining 31% is due to unique environmental influences. In contrast, GSP was similarly correlated between monozygotic (r = 0.55) and dizygotic (r = 0.49) twins, hence not genetically determined. GG was strongly correlated to A1C (r = 0.48), attributable mostly to genetic factors. About one-third of the heritability of A1C is shared with GG; the remainder is specific to A1C. CONCLUSIONS—Heritability of the GG accounts for about one-third of the heritability of A1C. By implication, there are gene(s) that preferentially affect erythrocyte lifespan or glucose and/or nonenzymatic glycation or deglycation in the intracellular, rather than extracellular, compartment.

Publisher

American Diabetes Association

Subject

Advanced and Specialized Nursing,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3