Affiliation:
1. Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, U.K.
2. Section of Endocrinology, Yale School of Medicine, New Haven, CT
Abstract
Lymph node stromal cells (LNSC) are essential for providing and maintaining peripheral self-tolerance of potentially autoreactive cells. In type 1 diabetes, proinsulin-specific CD8+ T cells, escaping central and peripheral tolerance, contribute to β-cell destruction. Using G9Cα−/−CD8+ T cells specific for proinsulin, we studied the mechanisms by which LNSC regulate low-avidity autoreactive cells in the NOD mouse model of type 1 diabetes. Whereas MHC-matched NOD-LNSC significantly reduced G9Cα−/−CD8+ T-cell cytotoxicity and dendritic cell–induced proliferation, they failed to sufficiently regulate T cells stimulated by anti-CD3/CD28. In contrast, non-MHC–matched, control C57BL/6 mouse LNSC suppressed T-cell receptor engagement by anti-CD3/CD28 via MHC-independent mechanisms. This C57BL/6-LNSC suppression was maintained even after removal of the LNSC, demonstrating a direct effect of LNSC on T cells, modifying antigen sensitivity and effector function. Thus, our results suggest that a loss of NOD-LNSC MHC-independent suppressive mechanisms may contribute to diabetes development.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine