Exercise-Linked Skeletal Irisin Ameliorates Diabetes-Associated Osteoporosis by Inhibiting the Oxidative Damage–Dependent miR-150-FNDC5/Pyroptosis Axis

Author:

Behera Jyotirmaya1,Ison Jessica1,Voor Michael J.23,Tyagi Neetu1ORCID

Affiliation:

1. 1Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY

2. 2Departments of Orthopaedic Surgery and Bioengineering, School of Medicine, University of Louisville, Louisville, KY

3. 3Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY

Abstract

Recent evidence suggests that physical exercise (EX) promotes skeletal development. However, the impact of EX on the progression of bone loss and deterioration of mechanical strength in mice with type 2 diabetic mellitus (T2DM) remains unexplored. In the current study, we investigated the effect of EX on bone mass and mechanical quality using a diabetic mouse model. The T2DM mouse model was established with a high-fat diet with two streptozotocin injections (50 mg/kg/body wt) in C57BL/6 female mice. The diabetic mice underwent treadmill exercises (5 days/week at 7–11 m/min for 60 min/day) for 8 weeks. The data showed that diabetes upregulated miR-150 expression through oxidative stress and suppressed FNDC5/Irisin by binding to its 3′-untranslated region. The decreased level of irisin further triggers the pyroptosis response in diabetic bone tissue. EX or N-acetyl cysteine or anti–miRNA-150 transfection in T2DM mice restored FNDC5/Irisin expression and bone formation. Furthermore, EX or recombinant irisin administration prevented T2DM-Induced hyperglycemia and improved glucose intolerance in diabetic mice. Furthermore, osteoblastic knockdown of Nlrp3 silencing (si-Nlrp3) or pyroptosis inhibitor (Ac-YVADCMK [AYC]) treatment restores bone mineralization in diabetic mice. Micro–computed tomography scans and mechanical testing revealed that trabecular bone microarchitecture and bone mechanical properties were improved after EX in diabetic mice. Irisin, either induced by skeleton or daily EX or directly administered, prevents bone loss by mitigating inflammasome-associated pyroptosis signaling in diabetic mice. This study demonstrates that EX-induced skeletal irisin ameliorates diabetes-associated glucose intolerance and bone loss and possibly provides a mechanism of its effects on metabolic osteoporosis.

Funder

National Institute of Health

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Reference64 articles.

1. Diagnosis and classification of diabetes mellitus. In Clinical Practice Recommendations;American Diabetes Association;Diabetes Care,2013

2. Effect of diet on type 2 diabetes mellitus: a review;Sami;Int J Health Sci (Qassim),2017

3. The worldwide epidemiology of type 2 diabetes mellitus--present and future perspectives;Chen;Nat Rev Endocrinol,2011

4. Mechanisms of diabetic complications;Forbes;Physiol Rev,2013

5. Epidemiology of diabetes and diabetes-related complications;Deshpande;Phys Ther,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3