Development of D–A–D‐Type NIR‐II Photothermal Agents for Synergistic Eradication of Multidrug‐Resistant Bacteria and Promoting Diabetic Wound Healing

Author:

Liu Ji1,Wang Yuxin1,Gao Weijie2,Cao Mingyi1,Bian Haojun1,Wang Shiya1,Gui Lijuan1,Zhao Changhui1,Gu Yueqing1,Zhong Qifeng1,Zheng Jinrong3,Zhang Li1,Yuan Zhenwei1ORCID

Affiliation:

1. Department of Biomedical Engineering School of Engineering China Pharmaceutical University 639 Longmian Road, Jiangning District Nanjing 211198 China

2. Department of Pharmacy The Affiliated Taizhou Second People's Hospital of Yangzhou University No.27 Jiankang Road, Jiangyan District Taizhou 225500 China

3. Institute of Cardiovascular diseases Xiamen Cardiovascular Hospital of Xiamen University School of Medicine Xiamen University Xiamen 361006 China

Abstract

AbstractThe challenge in treating diabetic foot infections caused by drug‐resistant bacteria is rapidly eradicating bacteria and accelerating wound healing. NIR‐II‐induced photothermal therapy (PTT) offers notable advantages over conventional treatments, such as broad‐spectrum bactericidal efficacy, better penetration depth in biological tissues, and higher skin tolerance thresholds, making it particularly suitable for addressing diabetic foot infections. Herein, it is found that NIR‐II dye IR26 exhibited good photothermal effects but poor photothermal stability. By modifying IR26 with methoxy and triphenylamine groups, a novel D–A–D‐type NIR‐II small molecule photothermal agent (IRC) is developed, with high photothermal stability and photothermal conversion efficiency (44.3%). IRC exhibited a maximum absorption wavelength of 1166 nm and a maximum emission wavelength of 1238 nm. However, PTT alone cannot effectively promote diabetic wound healing. Therefore, a novel nanoplatforms (Cur‐IRC@PCM) are developed by coloading IRC and curcumin, a natural wound–healing compound, into thermosensitive liposomes to treat MRSA‐infected diabetic wounds. Under 980 nm laser irradiation, Cur‐IRC@PCM provided PTT and controlled the precise release of curcumin, effectively synergizing to eradicate drug‐resistant bacteria and accelerate wound closure. The intelligent antibacterial nanoplatforms Cur‐IRC@PCM also exhibits excellent biocompatibility, rendering it a promising therapeutic tool in biomedical fields for combating drug‐resistant bacterial infections.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3