Hypothalamic Neurogenesis Is Not Required for the Improved Insulin Sensitivity Following Exercise Training

Author:

Borg Melissa L.1,Lemus Moyra1,Reichenbach Alex1,Selathurai Ahrathy1,Oldfield Brian J.1,Andrews Zane B.1,Watt Matthew J.1

Affiliation:

1. Department of Physiology, Monash University, Clayton, Victoria, Australia

Abstract

Neurons within the hypothalamic arcuate nucleus (ARC) are important regulators of energy balance. Recent studies suggest that neurogenesis in the ARC is an important regulator of body mass in response to pharmacological stressors. Regular exercise training improves insulin action, and is a primary treatment modality for obesity and type 2 diabetes. We examined whether exercise training causes hypothalamic neurogenesis and whether this contributes to exercise-induced improvements in insulin action. Short-term exercise in adult mice induced a proneurogenic transcriptional program involving growth factors, cell proliferation, and neurogenic regulators in the hypothalamus. Daily exercise training for 7 days increased hypothalamic cell proliferation 3.5-fold above that of sedentary mice, and exercise-induced cell proliferation was maintained in diet-induced obese mice. Colocalization studies indicated negligible neurogenesis in the ARC of sedentary or exercise-trained mice. Blocking cell proliferation via administration of the mitotic blocker arabinosylcytosine (AraC) did not affect food intake or body mass in obese mice. While 4 weeks of exercise training improved whole-body insulin sensitivity compared with sedentary mice, insulin action was not affected by AraC administration. These data suggest that regular exercise training induces significant non-neuronal cell proliferation in the hypothalamus of obese mice, but this proliferation is not required for enhanced insulin action.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3