ACE2 Deficiency Modifies Renoprotection Afforded by ACE Inhibition in Experimental Diabetes

Author:

Tikellis Chris1,Bialkowski Katarzyna1,Pete Josepha1,Sheehy Karen1,Su Qui1,Johnston Colin1,Cooper Mark E.1,Thomas Merlin C.1

Affiliation:

1. From the Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Baker Medical Research Institute, Melbourne, Australia

Abstract

OBJECTIVE— The degradation of angiotensin (Ang) II by ACE2, leading to the formation of Ang 1–7, is an important step in the renin-angiotensin system (RAS) and one that is significantly altered in the diabetic kidney. This study examines the role of ACE2 in early renal changes associated with diabetes and the influence of ACE2 deficiency on ACE inhibitor–mediated renoprotection. RESEARCH DESIGN AND METHODS— Diabetes was induced by streptozotocin in male c57bl6 mice and ACE2 knockout (KO) mice. After 5 weeks of study, animals were randomized to receive the ACE inhibitor perindopril (2 mg · kg−1 · day−1). Wild-type mice were further randomized to receive the selective ACE2 inhibitor MLN-4760 (10 mg · kg−1 · day−1) and followed for an additional 5 weeks. Markers of renal function and injury were then assessed. RESULTS— Induction of diabetes in wild-type mice was associated with a reduction in renal ACE2 expression and decreased Ang 1–7. In diabetic mice receiving MLN-4760 and in ACE2 KO mice, diabetes-associated albuminuria was enhanced, associated with an increase in blood pressure. However, renal hypertrophy and fibrogenesis were reduced in diabetic mice with ACE2 deficiency, and hyperfiltration was attenuated. Diabetic wild-type mice treated with an ACE inhibitor experienced a reduction in albuminuria and blood pressure. These responses were attenuated in both diabetic ACE2 KO mice and diabetic mice receiving MLN-4760. However, other renoprotective and antifibrotic actions of ACE inhibition in diabetes were preserved in ACE2-deficient mice. CONCLUSIONS— The expression of ACE2 is significantly modified by diabetes, which impacts both pathogenesis of kidney disease and responsiveness to RAS blockade. These data indicate that ACE2 is a complex and site-specific modulator of diabetic kidney disease.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3