The role of angiotensin converting enzyme 2 in the generation of angiotensin 1–7 by rat proximal tubules

Author:

Li Ningjun,Zimpelmann Joseph,Cheng Keding,Wilkins John A.,Burns Kevin D.

Abstract

ANG converting enzyme (ACE) 2 (ACE2) is a homologue of ACE, which is not blocked by conventional ACE inhibitors. ACE2 converts ANG 1–10 (ANG I) to ANG 1–9, which can be hydrolyzed by ACE to form the biologically active peptide ANG 1–7. ACE2 is expressed in the kidney, but its precise intrarenal localization is unclear, and the role of intrarenal ACE2 in the production of ANG 1–7 is unknown. The present studies determined the relative distribution of ACE2 in the rat kidney and defined its role in the generation of ANG 1–7 in proximal tubule. In microdissected rat nephron segments, semiquantitative RT-PCR revealed that ACE2 mRNA was widely expressed, with relatively high levels in proximal straight tubule (PST). Immunohistochemistry demonstrated ACE2 protein in tubular segments, glomeruli, and endothelial cells. Utilizing mass spectrometry, incubation of isolated PSTs with ANG I (10−6M) led to generation of ANG 1–7 (sensitivity of detection > 1 × 10−9M), accompanied by the formation of ANG 1–8 (ANG II) and ANG 1–9. The ACE2 inhibitor DX600 completely blocked ANG I-mediated generation of ANG 1–7. Incubation of PSTs with ANG 1–9 also led to generation of ANG 1–7, an effect blocked by the ACE inhibitor captopril or enalaprilat, but not by DX600. Incubation of PSTs with ANG II or luminal perfusion of ANG II did not result in detection of ANG 1–7. The results indicate that ACE2 is widely expressed in rat nephron segments and contributes to the production of ANG 1–7 from ANG I in PST. ANG II may not be a major substrate for ACE2 in isolated PST. The data suggest that ACE2-mediated production of ANG 1–7 represents an important component of the proximal tubular renin-ANG system.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3