Targeting Foxo1 in Mice Using Antisense Oligonucleotide Improves Hepatic and Peripheral Insulin Action

Author:

Samuel Varman T.1,Choi Cheol Soo1,Phillips Trevor G.1,Romanelli Anthony J.1,Geisler John G.2,Bhanot Sanjay2,McKay Robert2,Monia Brett2,Shutter John R.3,Lindberg Richard A.3,Shulman Gerald I.415,Veniant Murielle M.3

Affiliation:

1. Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut

2. Isis Pharmaceuticals, Carlsbad, California

3. Amgen, Thousand Oaks, California

4. Howard Hughes Medical Institute, Chevy Chase, Maryland

5. Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut

Abstract

Fasting hyperglycemia, a prominent finding in diabetes, is primarily due to increased gluconeogenesis. The transcription factor Foxo1 links insulin signaling to decreased transcription of PEPCK and glucose-6-phosphatase (G6Pase) and provides a possible therapeutic target in insulin-resistant states. Synthetic, optimized antisense oligonucleotides (ASOs) specifically inhibit Foxo1 expression. Here we show the effect of such therapy on insulin resistance in mice with diet-induced obesity (DIO). Reducing Foxo1 mRNA expression with ASO therapy in mouse hepatocytes decreased levels of Foxo1 protein and mRNA expression of PEPCK by 48 ± 4% and G6Pase by 64 ± 3%. In mice with DIO and insulin resistance, Foxo1 ASO therapy lowered plasma glucose concentration and the rate of basal endogenous glucose production. In addition, Foxo1 ASO therapy lowered both hepatic triglyceride and diacylglycerol content and improved hepatic insulin sensitivity. Foxo1 ASO also improved adipocyte insulin action. At a tissue-specific level, this manifested as improved insulin-mediated 2-deoxyglucose uptake and suppression of lipolysis. On a whole-body level, the result was improved glucose tolerance after an intraperitoneal glucose load and increased insulin-stimulated whole-body glucose disposal during a hyperinsulinemic-euglycemic clamp. In conclusion, Foxo1 ASO therapy improved both hepatic insulin and peripheral insulin action. Foxo1 is a potential therapeutic target for improving insulin resistance.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3