Molecular profiling of high-level athlete skeletal muscle after acute exercise – a systems biology approach

Author:

Reitzner Stefan MORCID,Emanuelsson Eric BORCID,Arif MuhammadORCID,Kaczkowski BogumilORCID,Kwon Andrew TJORCID,Mardinoglu AdilORCID,Arner ErikORCID,Chapman Mark A.ORCID,Sundberg Carl JohanORCID

Abstract

SUMMARYLife-long high-level exercise training leads to improvements in physical performance and multi-tissue adaptation following changes in molecular pathways. While skeletal muscle baseline differences between exercise-trained and untrained individuals have been previously investigated, it remains unclear how acute exercise multi-omics are influenced by training history. We recruited and extensively characterized 24 individuals categorized as endurance athletes, strength athletes or control subjects. Multi-omics profiling was performed from skeletal muscle before and at three time-points after endurance or resistance exercise sessions. Timeseries multi-omics analysis revealed distinct differences in molecular processes such as fatty- and amino acid metabolism and for transcription factors such as HIF1A and the MYF-family between both exercise history and acute form of exercise. Furthermore, we found a “transcriptional specialization effect” by transcriptional narrowing and intensification. Finally, we performed multi-omics network analysis and clustering, providing a novel resource of skeletal muscle transcriptomic and metabolomic profiling in highly trained and untrained individuals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3