Resident Macrophages Mediate Islet Amyloid Polypeptide–Induced Islet IL-1β Production and β-Cell Dysfunction

Author:

Westwell-Roper Clara Y.1,Ehses Jan A.2,Verchere C. Bruce12

Affiliation:

1. Department of Pathology and Laboratory Medicine, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada

2. Department of Surgery, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada

Abstract

Islet amyloid polypeptide (IAPP) aggregates to form amyloid fibrils in patients with type 2 diabetes and acts as a potent stimulus for interleukin (IL)-1β secretion by bone marrow–derived macrophages. We sought to determine the contribution of resident islet macrophages to IAPP-induced inflammation and β-cell dysfunction. In cultured islets, macrophages (F4/80+CD11b+CD11c+ cells) were required for IAPP-induced mRNA expression of the proinflammatory cytokines IL-1β, tumor necrosis factor-α, and IL-6 and the anti-inflammatory cytokines IL-10 and IL-1 receptor antagonist. Moreover, IAPP-induced IL-1β synthesis and caspase-1 activation were detected in macrophages but not other islet cell types. Transgenic mice with β-cell human IAPP (hIAPP) expression had impaired glucose tolerance, elevated islet Il1b mRNA, and decreased Il10 and Il1rn expression following high-fat feeding. Islet macrophages were the major source of these transcripts and expressed increased cell surface Ly6C and CD11c in hIAPP transgenic mice. Clodronate liposome–mediated depletion of islet macrophages improved glucose tolerance and blocked proinflammatory gene expression in hIAPP-expressing mice, despite increasing the amount of islet amyloid. These data provide the first evidence that IAPP aggregates skew resident islet macrophages toward a proinflammatory phenotype and suggest a mechanism by which anti-inflammatory therapies may protect β-cells from IAPP-induced islet dysfunction.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3