Farnesoid X Receptor Modulates Renal Lipid Metabolism, Fibrosis, and Diabetic Nephropathy

Author:

Jiang Tao1,Wang Xiaoxin X.1,Scherzer Pnina2,Wilson Paul1,Tallman James1,Takahashi Hideaki1,Li Jinping1,Iwahashi Mieko1,Sutherland Eileen1,Arend Lois3,Levi Moshe1

Affiliation:

1. Division of Renal Diseases and Hypertension, Departments of Medicine, Physiology and Biophysics, Denver VA Medical Center and University of Colorado Health Sciences Center, Denver, Colorado

2. Nephrology and Hypertension Services, Hadassah University Hospital, Jerusalem, Israel

3. Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio

Abstract

OBJECTIVE—Recent studies indicate an important role for nuclear receptors in regulating lipid and carbohydrate metabolism, fibrosis, and inflammation. Farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily. FXR is highly expressed in the liver, intestine, adrenal gland, and kidney. The primary bile acids are the highest affinity endogenous ligands for FXR. The effects of FXR agonists in diabetic kidney disease, the main cause of end-stage renal disease, however, have not been determined. RESEARCH DESIGN AND METHODS—To identify the effect of FXR activation in modulation of diabetic nephropathy, we treated 1) C57BL/6J mice on low-fat diet or high-fat diet with FXR agonists (GW4064 or cholic acid) for 1 week; 2) C57BLKS/J-db/db mice and their lean mates with GW4064 for 1 week; and 3) C57BL/6J-db/db mice and their lean mates with cholic acid for 12 weeks. RESULTS—We found that FXR agonists modulate renal sterol regulatory element–binding protein-1 (SREBP-1) expression and lipid metabolism and renal expression of profibrotic growth factors, proinflammatory cytokines, and oxidative stress enzymes and decrease glomerulosclerosis, tubulointerstitial fibrosis, and proteinuria. In renal mesangial cells, overexpression of FXR or treatment with GW4064 also inhibited SREBP-1c and other lipogenic genes, transforming growth factor-β, and interleukin-6, suggesting a direct role of FXR in modulating renal lipid metabolism and modulation of fibrosis and inflammation. CONCLUSIONS—These results therefore indicate a new and important role for FXR in the kidney and provide new therapeutic avenues for the treatment of diabetic nephropathy.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3