Regulation of Renal Fatty Acid and Cholesterol Metabolism, Inflammation, and Fibrosis in Akita and OVE26 Mice With Type 1 Diabetes

Author:

Proctor Gregory1,Jiang Tao1,Iwahashi Mieko1,Wang Zhuowei1,Li Jinping1,Levi Moshe1

Affiliation:

1. From the Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado

Abstract

In Akita and OVE26 mice, two genetic models of type 1 diabetes, diabetic nephropathy is characterized by mesangial expansion and loss of podocytes, resulting in glomerulosclerosis and proteinuria, and is associated with increased expression of profibrotic growth factors, proinflammatory cytokines, and increased oxidative stress. We have also found significant increases in renal triglyceride and cholesterol content. The increase in renal triglyceride content is associated with 1) increased expression of sterol regulatory element–binding protein (SREBP)-1c and carbohydrate response element–binding protein (ChREBP), which collectively results in increased fatty acid synthesis, 2) decreased expression of peroxisome proliferator–activated receptor (PPAR)-α and -δ, which results in decreased fatty acid oxidation, and 3) decreased expression of farnesoid X receptor (FXR) and small heterodimer partner (SHP). The increase in cholesterol content is associated with 1) increased expression of SREBP-2 and 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase, which results in increased cholesterol synthesis, and 2) decreased expression of liver X receptor (LXR)-α, LXR-β, and ATP-binding cassette transporter-1, which results in decreased cholesterol efflux. Our results indicate that in type 1 diabetes, there is altered renal lipid metabolism favoring net accumulation of triglycerides and cholesterol, which are driven by increases in SREBP-1, ChREBP, and SREBP-2 and decreases in FXR, LXR-α, and LXR-β, which may also play a role in the increased expression of profibrotic growth hormones, proinflammatory cytokines, and oxidative stress.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 253 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3