Diazoxide and D600 Inhibition of Insulin Release: Distinct Mechanisms Explain the Specificity for Different Stimuli

Author:

Henquin J C1,Charles S1,Nenquin M1,Mathot F1,Tamagawa T1

Affiliation:

1. Unité de Diabète et Croissance, University of Louvain School of Medicine UCL 54.74, B 1200 Brussels, Belgium

Abstract

The mechanisms by which diazoxide and D600 affect insulin release have been compared in experiments using isolated rat islets. Diazoxide (20–400 (JLM) and D600 (1–50 μM) produced a dose-dependent inhibition of glucose-stimulated release. Diazoxide also inhibited the insulinotropic effect of leucine and related substances (ketoisocaproate and BCH), but not that of potassium or of arginine and other cationic amino acids. Diazoxide suppressed glucose and leucine stimulation of Ca uptake in islet cells, but had no effect on the stimulation by potassium and arginine. By contrast, D600 suppressed the effect of all these agents on both Ca uptake and insulin release. Theophylline partially antagonized the inhibitory effect of D600 on release, in the presence of diazoxide, theophylline was much less effective, except when combined with cationic amino acids. Diazoxide inhibition of glucose-induced release was prevented by phentolamine, but hot by dihydroergotamine and yohimbine, two other blpckers of a-adrenergic receptors. Epinephrine abolished the insulinotropic effect of arginine alone or with theophylline. Diazoxide increased 86Rb+ efflux from islet cells, whereas D600 and epinephrine decreased it. The acceleration of efflux by diazoxide was inhibited by D600 and phentolamine, but not by epinephrine or dihydroergotamine. It thus appears that the effects of diazoxide on B-cells are not due to activation of α-adrenergic receptors. The results suggest that, in contrast to the direct blockade of Ca channels by D600, the blockade of these channels by diazoxide is secondary to the hyperpolarization of the B-cell membrane. Since the latter results from an increase in K permeability, the inhibitory effects of diazoxide are restricted to stimulators that depolarize the B-cell membrane by decreasing its K permeability (glucose, leucine, and related substances) and do not affect the stimulation by K and cationic amino acids, which depolarize by other mechanisms.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3