The Medial Amygdalar Nucleus: A Novel Glucose-Sensing Region That Modulates the Counterregulatory Response to Hypoglycemia

Author:

Zhou Ligang1,Podolsky Nina2,Sang Zhen1,Ding Yuyan1,Fan Xiaoning1,Tong Qingchun3,Levin Barry E.2,McCrimmon Rory J.14

Affiliation:

1. Department of Internal Medicine, Yale University, New Haven, Connecticut;

2. VA Medical Center, Neurology Service, East Orange, New Jersey;

3. Department of Internal Medicine, Beth Israel Deaconness Medical Center, Boston, Massachusetts;

4. Biomedical Research Institute, University of Dundee, Dundee, Scotland.

Abstract

OBJECTIVE To determine whether the medial amygdalar nucleus (MAN) represents a novel brain glucose-sensing region involved in the detection of hypoglycemia and generation of a counterregulatory hormone response. RESEARCH DESIGN AND METHODS Fura-2 calcium imaging was used to assess glucose responsivity in neurons isolated from the MAN and single-cell real-time reverse transcription PCR used to examine gene expression within glucose-responsive neurons. In vivo studies with local MAN perfusion of the glucoprivic agent, 2-deoxyglucose (2-DG), under normal and hypoglycemic conditions and also after MAN lesioning with ibotenic acid, were used to examine the functional role of MAN glucose sensors. In addition, retrograde neuronal tracer studies were used to examine reciprocal pathways between the MAN and the ventromedial hypothalamus (VMH). RESULTS The MAN contains a population of glucose-sensing neurons (13.5%), which express glucokinase, and the selective urocortin 3 (UCN3) receptor CRH-R2, but not UCN3 itself. Lesioning the MAN suppressed, whereas 2-DG infusion amplified, the counterregulatory response to hyperinsulinemic hypoglycemia in vivo. However, 2-DG infusion to the MAN or VMH under normoglycemic conditions had no systemic effect. The VMH is innervated by UCN3 neurons that arise mainly from the MAN, and ∼1/3 of MAN UCN3 neurons are active during mild hypoglycemia. CONCLUSIONS The MAN represents a novel limbic glucose-sensing region that contains characteristic glucokinase-expressing glucose-sensing neurons that respond directly to manipulations of glucose availability both in vitro and in vivo. Moreover, UCN3 neurons may provide feedback inhibitory regulation of the counterregulatory response through actions within the VMH and the MAN.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3