Glucose, insulin, and leptin signaling pathways modulate nitric oxide synthesis in glucose-inhibited neurons in the ventromedial hypothalamus

Author:

Canabal Debra D.,Song Zhentao,Potian Joseph G.,Beuve Annie,McArdle Joseph J.,Routh Vanessa H.

Abstract

Glucose-sensing neurons in the ventromedial hypothalamus (VMH) are involved in the regulation of glucose homeostasis. Glucose-sensing neurons alter their action potential frequency in response to physiological changes in extracellular glucose, insulin, and leptin. Glucose-excited neurons decrease, whereas glucose-inhibited (GI) neurons increase, their action potential frequency when extracellular glucose is reduced. Central nitric oxide (NO) synthesis is regulated by changes in local fuel availability, as well as insulin and leptin. NO is involved in the regulation of food intake and is altered in obesity and diabetes. Thus this study tests the hypothesis that NO synthesis is a site of convergence for glucose, leptin, and insulin signaling in VMH glucose-sensing neurons. With the use of the NO-sensitive dye 4-amino-5-methylamino-2′,7′-difluorofluorescein in conjunction with the membrane potential-sensitive dye fluorometric imaging plate reader, we found that glucose and leptin suppress, whereas insulin stimulates neuronal nitric oxide synthase (nNOS)-dependent NO production in cultured VMH GI neurons. The effects of glucose and leptin were mediated by suppression of AMP-activated protein kinase (AMPK). The AMPK activator 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR) increased both NO production and neuronal activity in GI neurons. In contrast, the effects of insulin on NO production were blocked by the phosphoinositide 3-kinase inhibitors wortmannin and LY-294002. Furthermore, decreased glucose, insulin, and AICAR increase the phosphorylation of VMH nNOS, whereas leptin decreases it. Finally, VMH neurons express soluble guanylyl cyclase, a downstream mediator of NO signaling. Thus NO may mediate, in part, glucose, leptin, and insulin signaling in VMH glucose-sensing neurons.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3