Mechanisms of Amelioration of Glucose-Induced Endothelial Dysfunction Following Inhibition of Protein Kinase C In Vivo

Author:

Booth Gregory1,Stalker Timothy J.1,Lefer Allan M.1,Scalia Rosario1

Affiliation:

1. From the Department of Physiology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania

Abstract

Inhibition of protein kinase C (PKC) activity has been shown to improve the endothelial dysfunction associated with hyperglycemia and diabetes. The mechanisms by which inhibition of PKC activity ameliorates endothelial dysfunction in diabetes are not well understood. We investigated the relationship between PKC inhibition and leukocyte-endothelium interaction in the microcirculation of the rat mesentery exposed to 25 mmol/l d-glucose for 12 h. d-Glucose significantly increased leukocyte rolling and adherence in mesenteric postcapillary venules. This proinflammatory action of d-glucose was inhibited by superfusion of the mesentery with 30 nmol/l bisindolylmaleimide-I, a potent, selective PKC inhibitor (P < 0.01 vs. glucose alone after 90 min of superfusion). Immunohistochemical localization of the cell adhesion molecules P-selectin and intercellular adhesion molecule (ICAM)-1 on the endothelial cell surface was increased by 25 mmol/l d-glucose (P < 0.001 vs. control tissue from rats injected with saline), which was significantly reduced by bisindolylmaleimide-I (P < 0.001 vs. glucose alone). In addition, we studied adhesion of isolated neutrophils to rat superior mesenteric artery (SMA) vascular segments stimulated with 25 mmol/l d-glucose for 4 h in vitro. Pretreatment of the SMA vascular segments with either superoxide dismutase enzyme (100 units/ml) or bisindolylmaleimide-I (30 nmol/l) equally inhibited the increased neutrophil adherence to SMA endothelium in response to glucose. These data demonstrate that inhibition of PKC activity reduces leukocyte-endothelium interactions by suppressing surface expression of endothelial cell adhesion molecules in response to increased oxidative stress. These results provide a novel mechanism by which inhibition of PKC activity improves endothelial cell function in hyperglycemia and diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3