Affiliation:
1. Queensland Micro‐ and Nanotechnology Griffith University Nathan Queensland 4111 Australia
2. Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
3. School of Environment and Science Griffith University Nathan Queensland 4111 Australia
Abstract
AbstractMonocyte recruitment and transmigration are crucial in atherosclerotic plaque development. The multi‐disease complexities aggravate the situation and continue to be a constant concern for understanding atherosclerosis plaque development. Herein, a 3D hydrogel‐based model that integrates disease‐induced microenvironments is sought to be designed, allowing us to explore the early stages of atherosclerosis, specifically examining monocyte fate in multi‐disease complexities. As a proof‐of‐concept study, murine cells are employed to develop the model. The model is constructed with collagen embedded with murine aortic smooth muscle cells and a murine endothelial monolayer lining. The model achieves in vitro disease complexities using external stimuli such as glucose and lipopolysaccharide (LPS). Hyperglycemia exhibits a significant increase in monocyte adhesion but no enhancement in monocyte transmigration and foam cell conversion compared to euglycemia. Chronic infection achieved by LPS stimulation results in a remarkable augment in initial monocyte attachment and a significant increment in monocyte transmigration and foam cells in all concentrations. Moreover, the model exhibits synergistic sensitivity under multi‐disease conditions such as hyperglycemia and infection, enhancing initial monocyte attachment, cell transmigration, and foam cell formation. Additionally, western blot data prove the enhanced levels of inflammatory biomarkers, indicating the model's capability to mimic disease‐induced complexities during early atherosclerosis progression.
Funder
National Heart Foundation of Australia
National Health and Medical Research Council
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献