Rapamycin and Interleukin-10 Treatment Induces T Regulatory Type 1 Cells That Mediate Antigen-Specific Transplantation Tolerance

Author:

Battaglia Manuela1,Stabilini Angela1,Draghici Elena1,Gregori Silvia1,Mocchetti Cristina1,Bonifacio Ezio2,Roncarolo Maria-Grazia13

Affiliation:

1. San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milan, Italy

2. Immunology of Diabetes Unit, San Raffaele Scientific Institute, Milan, Italy

3. Vita Salute San Raffaele University, Milan, Italy

Abstract

Islet transplantation is a cure for type 1 diabetes, but its potential is limited by the need for constant immunosuppression. One solution to this problem is the induction of transplantation tolerance mediated by T regulatory cells. T regulatory type 1 (Tr1) cells are characterized by their production of high levels of interleukin (IL)-10, which is crucial for their differentiation and suppressive function. We investigated the effects of IL-10 administered in combination with rapamycin on the induction of Tr1 cells that could mediate a state of tolerance in diabetic mice after pancreatic islet transplantation. The efficacy of this treatment was compared with IL-10 alone and standard immunosuppression. Stable long-term tolerance that was not reversible by alloantigen rechallenge was achieved only in mice treated with rapamycin plus IL-10. Tr1 cells that produced high levels of IL-10 and suppressed T-cell proliferation were isolated from splenocytes of rapamycin plus IL-10–treated mice after treatment withdrawal. In rapamycin plus IL-10–treated mice, endogenous IL-10 mediated an active state of tolerance, as was observed when the blockade of IL-10 activity rapidly induced graft rejection >100 days after transplantation. CD4+ T-cells from rapamycin plus IL-10–treated mice transferred antigen-specific tolerance in mice that received new transplants. Thus rapamycin plus IL-10 not only prevented allograft rejection but also induced Tr1 cells that mediated stable antigen-specific, long-term tolerance in vivo.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3