Inclusion of Low Amounts of Fructose With an Intraduodenal Glucose Load Markedly Reduces Postprandial Hyperglycemia and Hyperinsulinemia in the Conscious Dog

Author:

Shiota Masakazu1,Moore Mary Courtney1,Galassetti Pietro1,Monohan Michael1,Neal Doss W.1,Shulman Gerald I.2,Cherrington Alan D.1

Affiliation:

1. Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee

2. Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut

Abstract

Intraportal infusion of small amounts of fructose markedly augmented net hepatic glucose uptake (NHGU) during hyperglycemic hyperinsulinemia in conscious dogs. In this study, we examined whether the inclusion of catalytic amounts of fructose with a glucose load reduces postprandial hyperglycemia and the pancreatic β-cell response to a glucose load in conscious 42-h-fasted dogs. Each study consisted of an equilibration (−140 to −40 min), control (−40 to 0 min), and test period (0–240 min). During the latter period, glucose (44.4 μmol · kg−1 · min−1) was continuously given intraduodenally with (2.22 μmol · kg−1 · min−1) or without fructose. The glucose appearance rate in portal vein blood was not significantly different with or without the inclusion of fructose (41.3 ± 2.7 vs. 37.3 ± 8.3 μmol · kg−1 · min−1, respectively). In response to glucose infusion without the inclusion of fructose, the net hepatic glucose balance switched from output to uptake (from 10 ± 2 to 11 ± 4 μmol · kg−1 · min−1) by 30 min and averaged 17 ± 6 μmol · kg−1 · min−1. The fractional extraction of glucose by the liver during the infusion period was 7 ± 2%. Net glycogen deposition was 2.44 mmol glucose equivalent/kg body wt; 49% of deposited glycogen was synthesized via the direct pathway. Net hepatic lactate production was 1.4 mmol/kg body wt. Arterial blood glucose rose from 4.1 ± 0.2 to 7.3 ± 0.4 mmol/l, and arterial plasma insulin rose from 42 ± 6 to 258 ± 66 pmol/l at 30 min, after which they decreased to 7.0 ± 0.5 mmol/l and 198 ± 66 pmol/l, respectively. Arterial plasma glucagon decreased from 54 ± 7 to 32 ± 3 ng/l. In response to intraduodenal glucose infusion in the presence of fructose, net hepatic glucose balance switched from 9 ± 1 μmol · kg−1 · min−1 output to 12 ± 3 and 28 ± 5 μmol · kg−1 · min−1 uptake by 15 and 30 min, respectively. The average NHGU (28 ± 5 μmol · kg−1 · min−1) and fractional extraction during infusion period (12 ± 2%), net glycogen deposition (3.68 mmol glucose equivalent/kg body wt), net hepatic lactate production (3.27 mmol/kg), and glycogen synthesis via the direct pathway (68%) were significantly higher (P < 0.05) compared to that in the absence of fructose. The increases in arterial blood glucose (from 4.4 ± 0.1 to 6.4 ± 0.2 mmol/l at 30 min) and arterial plasma insulin (from 48 ± 6 to 126 ± 30 pmol/l at 30 min) were significantly smaller (P < 0.05). In summary, the inclusion of small amounts of fructose with a glucose load augmented NHGU, increased hepatic glycogen synthesis via the direct pathway, and augmented hepatic glycolysis. As a result, postprandial hyperglycemia and insulin release by the pancreatic β-cell were reduced. In conclusion, catalytic amounts of fructose have the ability to improve glucose tolerance.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Reference77 articles.

1. Pagliassotti MJ, Horton TJ: Hormonal and neural regulation of hepatic glucose uptake. In The Role of the Liver in Maintaining Glucose Homeostasis Pagliassotti MJ, Davis SN, Cherrington AD, Eds. Austin, TX, Landes, 1994, p. 45–84

2. Shulman GI, Landau BR: Pathways of glycogen repletion. Physiol Rev 72: 1019–1035, 1992

3. Shulman GI, Cline G, Schmann WC, Chandramonli V, Kumaran K, Landau BR: Quantitative comparison of pathways of hepatic glycogen repletion in fed and fasted humans. Am J Physiol 259:E335–E341, 1990

4. Radziuk J: Source of carbon on hepatic glycogen synthesis during absorption of an oral glucose load in humans. FASEB J 41:110–116, 1982

5. Magnusson I, Chandramouli V, Schumann WC, Kumaran K, Wahren J, Landau BR: Pathways of hepatic glucose formation in humans following ingestion of a glucose load in the fed state. Metabolism 38:583–585, 1989

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3