Loss of Connexin36 Channels Alters β-Cell Coupling, Islet Synchronization of Glucose-Induced Ca2+ and Insulin Oscillations, and Basal Insulin Release

Author:

Ravier Magalie A.1,Güldenagel Martin2,Charollais Anne3,Gjinovci Asllan3,Caille Dorothée3,Söhl Goran2,Wollheim Claes B.3,Willecke Klaus2,Henquin Jean-Claude1,Meda Paolo3

Affiliation:

1. Unit of Endocrinology and Metabolism, University of Louvain Faculty of Medicine, Brussels, Belgium

2. Institute of Genetics, University of Bonn, Bonn, Germany

3. Department of Cell Physiology and Metabolism, Geneva University Medical Center, Geneva, Switzerland

Abstract

Normal insulin secretion requires the coordinated functioning of β-cells within pancreatic islets. This coordination depends on a communications network that involves the interaction of β-cells with extracellular signals and neighboring cells. In particular, adjacent β-cells are coupled via channels made of connexin36 (Cx36). To assess the function of this protein, we investigated islets of transgenic mice in which the Cx36 gene was disrupted by homologous recombination. We observed that compared with wild-type and heterozygous littermates that expressed Cx36 and behaved as nontransgenic controls, mice homozygous for the Cx36 deletion (Cx36−/−) featured β-cells devoid of gap junctions and failing to exchange microinjected Lucifer yellow. During glucose stimulation, islets of Cx36−/− mice did not display the regular oscillations of intracellular calcium concentrations ([Ca2+]i) seen in controls due to the loss of cell-to-cell synchronization of [Ca2+]i changes. The same islets did not release insulin in a pulsatile fashion, even though the overall output of the hormone in response to glucose stimulation was normal. However, under nonstimulatory conditions, islets lacking Cx36 showed increased basal release of insulin. These data show that Cx36-dependent signaling is essential for the proper functioning of β-cells, particularly for the pulsatility of [Ca2+]i and insulin secretion during glucose stimulation.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3