Affiliation:
1. From the Medical Department M (Endocrinology and Diabetes) and Medical Research Laboratories, Århus Sygehus, Århus University Hospital, Århus C, Denmark
Abstract
Continuous glucose monitoring (CGM) is being explored using several types of glucose sensors. Some are designed for subcutaneous adipose tissue. It is important to determine to which extent these glucose fluctuations in different tissues reflect changes taking place in the central nervous system, where glucose sensing is thought to occur. We studied the ability of subcutaneous adipose interstitial fluid measurements to parallel glucose propagations in blood, muscle, and central nervous system (CNS) during hyper- and hypoglycemia. A subcutaneous CGM system was applied in the CNS, subcutaneous adipose tissue, and skeletal muscle of nine Vietnamese potbellied pigs, and data were compared with frequent sampling in blood. Alterations in glucose levels were induced with intravenous glucose and insulin. During hyperglycemia, no difference was detected in delay between blood and interstitial glucose levels in subcutaneous adipose tissue (18.0 ± 0.8 min), muscle (18.0 ± 0.9 min), and CNS (20.3 ± 1.2 min), respectively. During hypoglycemia, we found no time difference between interstitial parameters in the three tissues. However, the amplitude of glucose changes varied considerably, with a smaller magnitude of glucose change taking place in the brain. The timing of glucose excursions in subcutaneous adipose tissue and muscle reflect excursions in CNS. The reduced magnitude of glucose excursions in the brain suggests that different mechanisms of glucose transport are operative in CNS compared with subcutaneous adipose tissue and muscle.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献