Longitudinal compensation for fat-induced insulin resistance includes reduced insulin clearance and enhanced beta-cell response.

Author:

Mittelman S D1,Van Citters G W1,Kim S P1,Davis D A1,Dea M K1,Hamilton-Wessler M1,Bergman R N1

Affiliation:

1. Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles 90089, USA.

Abstract

Central adiposity is highly correlated with insulin resistance, which is an important risk factor for type 2 diabetes and other chronic diseases. However, in normal individuals, central adiposity can be tolerated for many years without development of impaired glucose tolerance or diabetes. Here we examine longitudinally the mechanisms by which glucose tolerance can be maintained in the face of substantial insulin resistance. Normal dogs were fed a diet enriched with moderate amounts of fat (2 g x kg(-1) x day(-1)), similar to that seen in modern "cafeteria" diets, and the time course of metabolic changes in these animals was examined over 12 weeks. Trunk adiposity as assessed by magnetic resonance imaging increased from 12 to 19%, but body weight remained unchanged. Insulin sensitivity (SI) as determined by frequently sampled intravenous glucose tolerance tests was measured over a 12-week period. SI decreased 35% by week 1 and remained impaired for the entire 12 weeks. Intravenous glucose tolerance was reduced transiently for 1 week, recovered to baseline, and then again began to decline after 8 weeks. First-phase insulin response began to increase after week 2, peaked by week 6 (190% of basal), and then declined. The increase in insulin response was due partially to enhanced beta-cell function (22%) but due also to an approximately 50% reduction in insulin clearance. This compensation by insulin clearance was also confirmed with insulin clamps performed in fat-fed versus control dogs. The present study confirms the ability of the normal individual to compensate for fat-induced insulin resistance by enhanced insulin response, such that the product of insulin sensitivity x secretion is little changed. However, the compensation is due as much to reduced insulin clearance as increased beta-cell sensitivity to glucose. Reduced hepatic extraction of insulin may be the first line of defense providing a higher proportion of secreted insulin to the periphery and sparing the beta-cells during compensation for the insulin-resistant state.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 169 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3