A Mammalian Protein Homologous to Fructosamine-3-Kinase Is a Ketosamine-3-Kinase Acting on Psicosamines and Ribulosamines but not on Fructosamines

Author:

Collard François1,Delpierre Ghislain1,Stroobant Vincent2,Matthijs Gert3,Van Schaftingen Emile1

Affiliation:

1. Laboratory of Physiological Chemistry, ICP, and Université Catholique de Louvain, Brussels, Belgium

2. Brussels Branch of the Ludwig Institute, Brussels, Belgium

3. Center for Human Genetics, University of Leuven, Leuven, Belgium

Abstract

Fructosamine-3-kinase (FN3K) is an enzyme that appears to be responsible for the removal of fructosamines from proteins. In this study, we report the sequence of human and mouse cDNAs encoding proteins sharing 65% sequence identity with FN3K. The genes encoding FN3K and FN3K-related protein (FN3K-RP) are present next to each other on human chromosome 17q25, and they both have a similar 6-exon structure. Northern blots of mouse tissues RNAs indicate a high level of expression of both genes in bone marrow, brain, kidneys, and spleen. Human FN3K-RP was transfected in human embryonic kidney (HEK) cells, and the expressed protein was partially purified by chromatography on Blue Sepharose. Unlike FN3K, FN3K-RP did not phosphorylate fructoselysine, 1-deoxy-1-morpholino-fructose, or lysozyme glycated with glucose. In a more systematic screening for potential substrates for FN3K-RP, we found, however, that both enzymes phosphorylated ketosamines with a d-configuration in C3 (psicoselysine, 1-deoxy-1-morpholino-psicose, 1-deoxy-1-morpholino-ribulose, lysozyme glycated with allose—the C3 epimer of glucose, or with ribose). Tandem mass spectrometry and nuclear magnetic resonance analysis of the product of phosphorylation of 1-deoxy-1-morpholino-psicose by FN3K-RP indicated that this enzyme phosphorylates the third carbon of the sugar moiety. These results indicate that FN3K-RP is a ketosamine-3-kinase (ketosamine-3-kinase 2). This enzyme presumably plays a role in freeing proteins from ribulosamines or psicosamines, which might arise in a several step process, from the reaction of amines with glucose and/or glycolytic intermediates. This role is shared by fructosamine-3-kinase (ketosamine-3-kinase 1), which has, in addition, the unique capacity to phosphorylate fructosamines.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3