Liver-Specific igf-1 Gene Deletion Leads to Muscle Insulin Insensitivity

Author:

Yakar Shoshana1,Liu Jun-Li1,Fernandez Ana M.1,Wu Yiping1,Schally Andrew V.2,Frystyk Jan3,Chernausek Steve D.4,Mejia Wilson1,Le Roith Derek1

Affiliation:

1. Section on Cellular and Molecular Physiology, Cellular Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland

2. Veterans Affairs Medical Center and the Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana

3. Institute of Experimental Clinical Research, Aarhus University Hospital, Aarhus, Denmark

4. Department of Endocrinology, Children’s Hospital Medical Center, Cincinnati, Ohio

Abstract

Insulin and insulin-like growth factors (IGFs) mediate a variety of signals involved in mammalian development and metabolism. To study the metabolic consequences of IGF-I deficiency, we used the liver IGF-I–deficient (LID) mouse model. The LID mice show a marked reduction (∼75%) in circulating IGF-I and elevated growth hormone (GH) levels. Interestingly, LID mice show a fourfold increase in serum insulin levels (2.2 vs. 0.6 ng/ml in control mice) and abnormal glucose clearance after insulin injection. Fasting blood glucose levels and those after a glucose tolerance test were similar between the LID mice and their control littermates. Thus, the high levels of circulating insulin enable the LID mice to maintain normoglycemia in the presence of apparent insulin insensitivity. Insulin-induced autophosphorylation of the insulin receptor and tyrosine phosphorylation of insulin receptor substrate (IRS)-1 were absent in muscle, but were normal in liver and white adipose tissue of the LID mice. In contrast, IGF-I–induced autophosphorylation of its cognate receptor and phosphorylation of IRS-1 were normal in muscle of LID mice. Thus, the insulin insensitivity seen in the LID mice is muscle specific. Recombinant human IGF-I treatment of the LID mice caused a reduction in insulin levels and an increase in insulin sensitivity. Treatment of the LID mice with GH-releasing hormone antagonist, which reduces GH levels, also increased insulin sensitivity. These data provide evidence of the role of circulating IGF-I as an important component of overall insulin action in peripheral tissues.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3