Inositol (1,4,5)-Trisphosphate Dynamics and Intracellular Calcium Oscillations in Pancreatic β-Cells

Author:

Tamarina Natalia A.1,Kuznetsov Andrey1,Rhodes Christopher J.2,Bindokas Vytautas P.1,Philipson Louis H.1

Affiliation:

1. Department of Medicine, University of Chicago, Chicago, Illinois

2. Pacific Northwest Research Institute, Seattle, Washington

Abstract

Glucose-stimulated insulin secretion is associated with transients of intracellular calcium concentration ([Ca2+]i) in the pancreatic β-cell. We tested the hypothesis that inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3] [Ca2+]i release is incorporated in glucose-induced [Ca2+]i oscillations in mouse islets and MIN6 cells. We found that depletion of intracellular Ca2+ stores with thapsigargin increased the oscillation frequency by twofold and inhibited the slow recovery phase of [Ca2+]i oscillations. We employed a pleckstrin homology domain–containing fluorescent biosensor, phospholipase C∂ pleckstrin homology domain–enhanced green fluorescent protein, to visualize Ins(1,4,5)P3 dynamics in insulin-secreting MIN6 cells and mouse islets in real time using a video-rate confocal system. In both types of cells, stimulation with carbamoylcholine (CCh) and depolarization with KCl results in an increase in Ins(1,4,5)P3 accumulation in the cytoplasm. When stimulated with glucose, the Ins(1,4,5)P3 concentration in the cytoplasm oscillates in parallel with oscillations of [Ca2+]i. Maximal accumulation of Ins(1,4,5)P3 in these oscillations coincides with the peak of [Ca2+]i and tracks changes in frequencies induced by the voltage-gated K+ channel blockade. We show that Ins(1,4,5)P3 release in insulin-secreting cells can be stimulated by depolarization-induced Ca2+ flux. We conclude that Ins(1,4,5)P3 concentration oscillates in parallel with [Ca2+]i in response to glucose stimulation, but it is not the driving force for [Ca2+]i oscillations.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3