Effects of Diabetes on Ryanodine Receptor Ca Release Channel (RyR2) and Ca2+ Homeostasis in Rat Heart

Author:

Yaras Nazmi1,Ugur Mehmet1,Ozdemir Semir1,Gurdal Hakan2,Purali Nuhan3,Lacampagne Alain4,Vassort Guy4,Turan Belma1

Affiliation:

1. Department of Biophysics, School of Medicine, Ankara University, Ankara, Turkey

2. Department of Pharmacology, School of Medicine, Ankara University, Ankara, Turkey

3. Department of Biophysics, School of Medicine, Hacettepe University, Ankara, Turkey

4. INSERM U-637, Physiopathologie Cardiovasculaire, CHU Arnaud de Villeneuve, Montpellier, France

Abstract

The defects identified in the mechanical activity of the hearts from type 1 diabetic animals include alteration of Ca2+ signaling via changes in critical processes that regulate intracellular Ca2+ concentration. These defects result partially from a dysfunction of cardiac ryanodine receptor calcium release channel (RyR2). The present study was designed to determine whether the properties of the Ca2+ sparks might provide insight into the role of RyR2 in the altered Ca2+ signaling in cardiomyocytes from diabetic animals when they were analyzed together with Ca2+ transients. Basal Ca2+ level as well as Ca2+-spark frequency of cardiomyoctes isolated from 5-week streptozotocin (STZ)-induced diabetic rats significantly increased with respect to aged-matched control rats. Ca2+ transients exhibited significantly reduced amplitude and prolonged time courses as well as depressed Ca2+ loading of sarcoplasmic reticulum in diabetic rats. Spatio-temporal properties of the Ca2+ sparks in cardiomyocytes isolated from diabetic rats were also significantly altered to being almost parallel to the changes of Ca2+ transients. In addition, RyR2 from diabetic rat hearts were hyperphosphorylated and protein levels of both RyR2 and FKBP12.6 depleted. These data show that STZ-induced diabetic rat hearts exhibit altered local Ca2+ signaling with increased basal Ca2+ level.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 143 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3