Influence of experimental diabetes on sarcoplasmic reticulum function in rat ventricular muscle

Author:

Bouchard R. A.1,Bose D.1

Affiliation:

1. Department of Pharmacology and Therapeutics, Faculty of Medicine,University of Manitoba, Winnipeg, Canada.

Abstract

We examined whether the decrease in cardiac contractility in streptozotocin-induced diabetes in the rat is accompanied by reduced or excessive loading of the sarcoplasmic reticulum (SR) with Ca2+. Pooled SR Ca2+ content and fractional release on stimulation were estimated with rapid cooling contracture (RCC) and twitch height measurements, respectively. Interval-force relation was studied to assess the ability of diabetic tissue to alter the relative contribution of SR Ca2+ for contraction. Two months after injection with streptozotocin, peak isometric contraction and steady-state RCC decreased in parallel to approximately 50% of control values. The time to peak force development and complete relaxation was prolonged to 156 and 161% in diabetes in the presence of 1.25 and 2.5 mM extracellular Ca2+ concentration [Ca2+]o, respectively. A stepwise increase in the rate of stimulation from 0.2 to 0.5 and 1.0 Hz resulted in a negative force staircase, the slope of which was identical in control and diabetic animals in each [Ca2+]o tested. Postrest contractions and RCC, after variable test intervals, were significantly depressed after 0.2 and 0.5 Hz stimulation in diabetic muscles at 1.25 mM [Ca2+]o. This defect of SR Ca2+ availability was reversed by increasing the stimulation frequency to 1.0 Hz or by elevating [Ca2+]o to 2.5 mM. The results suggest that the marked reduction of developed tension in diabetic tissues was a consequence of depleted SR Ca2+ stores, rather than a result of chronic SR Ca2+ overloading. The maintained integrity of the interval-force relation in the presence of diabetes implies that the cellular mechanisms responsible for frequency- and time-dependent alterations in SR Ca2+ availability are not disturbed at this stage of disease.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3