Small Increases in Insulin Inhibit Hepatic Glucose Production Solely Caused by an Effect on Glycogen Metabolism

Author:

Edgerton Dale S.1,Cardin Sylvain1,Emshwiller Maya1,Neal Doss1,Chandramouli Visvanathan2,Schumann William C.2,Landau Bernard R.2,Rossetti Luciano3,Cherrington Alan D.1

Affiliation:

1. Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee

2. Department of Medicine and Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio

3. Diabetes Research and Training Center and Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York

Abstract

Based on our earlier work, a 2.5-fold increase in insulin secretion should completely inhibit hepatic glucose production through the hormone’s direct effect on hepatic glycogen metabolism. The aim of the present study was to test the accuracy of this prediction and to confirm that gluconeogenic flux, as measured by three independent techniques, was unaffected by the increase in insulin. A 40-min basal period was followed by a 180-min experimental period in which an increase in insulin was induced, with euglycemia maintained by peripheral glucose infusion. Arterial and hepatic sinusoidal insulin levels increased from 10 ± 2 to 19 ± 3 and 20 ± 4 to 45 ± 5 μU/ml, respectively. Net hepatic glucose output decreased rapidly from 1.90 ± 0.13 to 0.23 ± 0.16 mg · kg−1 · min−1. Three methods of measuring gluconeogenesis and glycogenolysis were used: 1) the hepatic arteriovenous difference technique (n = 8), 2) the [14C]phosphoenolpyruvate technique (n = 4), and 3) the 2H2O technique (n = 4). The net hepatic glycogenolytic rate decreased from 1.72 ± 0.20 to −0.28 ± 0.15 mg · kg−1 · min−1 (P < 0.05), whereas none of the above methods showed a significant change in hepatic gluconeogenic flux (rate of conversion of phosphoenolpyruvate to glucose-6-phosphate). These results indicate that liver glycogenolysis is acutely sensitive to small changes in plasma insulin, whereas gluconeogenic flux is not.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3